Personenschutzabstand

Effektive Strahlungsleistung (ERP) II

AG501: Die äquivalente (effektive) Strahlungsleistung (ERP) ist ...

A: das Produkt aus der Leistung, die unmittelbar der Antenne zugeführt wird, und ihrem Gewinnfaktor in einer Richtung, bezogen auf den isotropen Strahler.

B: das Produkt aus der Leistung, die unmittelbar der Antenne zugeführt wird, und ihrem Gewinnfaktor in einer Richtung, bezogen auf den Halbwellendipol.

C: die durchschnittliche Leistung, die ein Sender unter normalen Betriebsbedingungen an die Antennenspeiseleitung während eines Zeitintervalls abgibt, das im Verhältnis zur Periode der tiefsten Modulationsfrequenz ausreichend lang ist.

D: die durchschnittliche Leistung, die ein Sender unter normalen Betriebsbedingungen während einer Periode der Hochfrequenzschwingung bei der höchsten Spitze der Modulationshüllkurve der Antennenspeiseleitung zuführt.

AG502: Nach welcher der Antworten kann die ERP (Effective Radiated Power) berechnet werden?

A: $P_{\textrm{ERP}} = (P_{\textrm{Sender}} + P_{\textrm{Verluste}}) + G_{\textrm{Antenne}}$ bezogen auf einen isotropen Strahler

B: $P_{\textrm{ERP}} = (P_{\textrm{Sender}} – P_{\textrm{Verluste}}) \cdot G_{\textrm{Antenne}}$ bezogen auf einen Halbwellendipol

C: $P_{\textrm{ERP}} = (P_{\textrm{Sender}} – P_{\textrm{Verluste}}) + G_{\textrm{Antenne}}$ bezogen auf einen Halbwellendipol

D: $P_{\textrm{ERP}} = (P_{\textrm{Sender}} \cdot P_{\textrm{Verluste}}) \cdot G_{\textrm{Antenne}}$ bezogen auf einen isotropen Strahler

AG503: Ein Sender für das 630 m-Band mit 50 W Ausgangsleistung ist mittels eines kurzen Koaxialkabels an eine Antenne mit 20 dBd Verlust angeschlossen. Welche ERP wird von der Antenne abgestrahlt?

A: 50 W

B: 5,0 W

C: 2,5 W

D: 0,5 W

Personenschutzabstand III

AK102: Durch welche Größe sind Beträge der elektrischen und magnetischen Feldstärke eines elektromagnetischen Feldes im Fernfeld miteinander verknüpft?

A: Durch die Ausbreitungsbedingungen in der Ionosphäre

B: Durch die Aufbauhöhe der Antenne

C: Durch die Polarisationsrichtung der verwendeten Antenne

D: Durch den Wellenwiderstand im jeweiligen Medium

AK104: Wie errechnen Sie die Leistung am Einspeisepunkt der Antenne (Antenneneingangsleistung) bei bekannter Senderausgangsleistung?

A: Sie ermitteln die Verluste zwischen Senderausgang und Antenneneingang und berechnen aus dieser Dämpfung einen Dämpfungsfaktor$ D$; die Antenneneingangsleistung ist dann: $P_{\textrm{Ant}} = D\cdot P_{\textrm{Sender}}$

B: Die Antenneneingangsleistung ist der Spitzenwert der Senderausgangsleistung, also: $P_{\textrm{Ant}} = \sqrt{2\cdot P_{\textrm{Sender}}}$

C: Antenneneingangsleistung und Senderausgangsleistung sind gleich, da die Kabelverluste bei Amateurfunkstationen vernachlässigbar klein sind, d. h. es gilt: $P_{\textrm{Ant}} = P_{\textrm{Sender}}$

D: Die Antenneneingangsleistung ist der Spitzen-Spitzen-Wert der Senderausgangsleistung, also: $P_{\textrm{Ant}} = 2\cdot\sqrt{2\cdot P_{\textrm{Sender}}}$

AK107: Sie betreiben eine Amateurfunkstelle auf dem 2 m-Band im Modulationsverfahren FM mit einer Rundstrahlantenne mit 6 dB Gewinn bezogen auf einen Dipol. Wie hoch darf die maximale Ausgangsleistung Ihres Senders unter Vernachlässigung der Kabeldämpfung sein, wenn der Grenzwert für den Personenschutz 28 Volt/m und der zur Verfügung stehende Sicherheitsabstand 5 m beträgt?

A: ca. 100 W

B: ca. 265 W

C: ca. 160 W

D: ca. 75 W

AK113: Eine Yagi-Uda-Antenne mit 12,15 dBi Antennengewinn wird mit 250 W Sendeleistung im 2 m-Band direkt gespeist. Welche elektrische Feldstärke ergibt sich bei Freiraumausbreitung in 30 m Entfernung in etwa?

A: 15,0 V/m

B: 11,7 V/m

C: 9,1 V/m

D: 10,1 V/m

AK114: Eine vertikale Dipol-Antenne wird mit 10 W Sendeleistung im 70 cm-Band direkt gespeist. Welche elektrische Feldstärke ergibt sich bei Freiraumausbreitung in 10 m Entfernung in etwa?

A: 2,2 V/m

B: 0,4 V/m

C: 8,9 V/m

D: 1,7 V/m

AK115: Eine Amateurfunkstelle sendet in FM mit einer äquivalenten Strahlungsleistung (ERP) von 100 W. Wie groß ist die Feldstärke im freien Raum in einer Entfernung von 100 m?

A: 0,43 V/m

B: 0,7 V/m

C: 0,5 V/m

D: 0,55 V/m

Näherungsformel II

AK106: Sie möchten den Personenschutz-Sicherheitsabstand für die Antenne Ihrer Amateurfunkstelle für das 10 m-Band und das Übertragungsverfahren RTTY berechnen. Der Grenzwert im Fall des Personenschutzes beträgt 28 V/m. Sie betreiben einen Dipol, der von einem Sender mit einer Leistung von 100 W über ein Koaxialkabel gespeist wird. Die Kabeldämpfung sei vernachlässigbar. Wie groß muss der Sicherheitsabstand sein?

A: 13,7 m

B: 1,96 m

C: 5,01 m

D: 2,50 m

AK108: Sie möchten den Personenschutz-Sicherheitsabstand für die Antenne Ihrer Amateurfunkstelle für das 20 m-Band und das Übertragungsverfahren RTTY berechnen. Der Grenzwert im Fall des Personenschutzes beträgt 28 V/m. Sie betreiben einen Dipol, der von einem Sender mit einer Leistung von 300 W über ein Koaxialkabel gespeist wird. Die Kabeldämpfung beträgt 0,5 dB. Wie groß ist der Sicherheitsabstand?

A: 3,20 m

B: 4,97 m

C: 2,39 m

D: 4,10 m

AK109: Sie möchten den Personenschutz-Sicherheitsabstand für die Antenne Ihrer Amateurfunkstelle für das 20 m-Band und das Übertragungsverfahren RTTY berechnen. Der Grenzwert im Fall des Personenschutzes beträgt 28 V/m. Sie betreiben einen Dipol, der von einem Sender mit einer Leistung von 700 W über ein Koaxialkabel gespeist wird. Die Kabeldämpfung beträgt 0,5 dB. Wie groß ist der Sicherheitsabstand?

A: 7,36 m

B: 4,87 m

C: 5,62 m

D: 6,26 m

AK110: Sie möchten den Personenschutz-Sicherheitsabstand für die Antenne Ihrer Amateurfunkstelle in Hauptstrahlrichtung für das 2 m-Band und die Modulationsverfahren FM berechnen. Der Grenzwert im Fall des Personenschutzes beträgt 28 V/m. Sie betreiben eine Yagi-Uda-Antenne mit einem Gewinn von $11,5 $dBd. Die Antenne wird von einem Sender mit einer Leistung von 75 W über ein Koaxialkabel gespeist. Die Kabeldämpfung beträgt 1,5 dB. Wie groß muss der Sicherheitsabstand sein?

A: 2,17 m

B: 5,35 m

C: 22,09 m

D: 6,86 m

AK111: Sie möchten den Personenschutz-Sicherheitsabstand für die Antenne Ihrer Amateurfunkstelle für das 2 m-Band und das Modulationsverfahren FM berechnen. Der Grenzwert im Fall des Personenschutzes beträgt 28 V/m. Sie betreiben eine Yagi-Uda-Antenne mit einem Gewinn von 10,5 dBd. Die Antenne wird von einem Sender mit einer Leistung von 100 W über ein Koaxialkabel gespeist. Die Kabeldämpfung beträgt 1,5 dB. Wie groß ist der Sicherheitsabstand?

A: 8,4 m

B: 7,1 m

C: 6,6 m

D: 5,6 m

AK112: Sie möchten den Personenschutz-Sicherheitsabstand für das 13 cm-Band und das Modulationsverfahren FM berechnen. Der Grenzwert im Fall des Personenschutzes beträgt 61 V/m. Sie betreiben einen Parabolspiegel mit einem Gewinn von 18 dBd. Die Antenne wird von einem Sender mit einer Leistung von 40 W über ein PE-Schaum-Massivschirm-Kabel mit einer Dämpfung von 2 dB gespeist. Wie groß muss der Personenschutz-Sicherheitsabstand in Hauptstrahlrichtung sein?

A: 4,6 m

B: 3,6 m

C: 14,5 m

D: 5,8 m

Nahfeld

AK101: Warum ist im Nahfeld einer Strahlungsquelle keine einfache Umrechnung zwischen den Feldgrößen E und H und damit auch keine vereinfachte Berechnung des Schutzabstandes möglich?

A: Weil die elektrische und die magnetische Feldstärke im Nahfeld nicht senkrecht zur Ausbreitungsrichtung stehen und auf Grund des Einflusses der Erdoberfläche eine Phasendifferenz von größer 180° aufweisen.

B: Weil die elektrische und die magnetische Feldstärke im Nahfeld keine konstante Phasenbeziehung zueinander aufweisen.

C: Weil die elektrische und die magnetische Feldstärke im Nahfeld nicht exakt senkrecht aufeinander stehen und sich durch die nicht ideale Leitfähigkeit des Erdbodens am Sendeort der Feldwellenwiderstand des freien Raumes verändert.

D: Weil die elektrische und die magnetische Feldstärke im Nahfeld immer senkrecht aufeinander stehen und eine Phasendifferenz von 90° aufweisen.

AK103: In welchem Fall hat die folgende Formel zur Berechnung des Sicherheitsabstandes Gültigkeit und was sollten Sie tun, wenn die Gültigkeit nicht mehr sichergestellt ist? $d = \frac{\sqrt{30 Ω\cdot P_{\textrm{EIRP}}}}{E}$

A: Die Formel gilt nur für Abstände $d > \frac{\lambda}{2\cdotπ}$ bei vertikal polarisierten Antennen. Bei kleineren Abständen und immer bei horizontal polarisierten Antennen muss der Sicherheitsabstand durch zum Beispiel Feldstärkemessungen oder Nahfeldberechnungen (Simulationen) ermittelt werden.

B: Im Bereich von Amateurfunkstellen ist der Unterschied zwischen Nah- und Fernfeld so gering, dass obige Formel, die eigentlich nur im Fernfeld gilt, trotzdem für alle Raumbereiche verwendet werden kann.

C: Die Formel gilt nur für Abstände $d > \frac{\lambda}{2\cdotπ}$ bei den meisten Antennenformen (z. B. Dipol-Antennen). Für Antennen, die z. B. geometrisch klein im Verhältnis zur Wellenlänge sind und/oder in kürzerem Abstand zur Antenne muss der Sicherheitsabstand zum Beispiel durch Feldstärkemessungen oder Nahfeldberechnungen (Simulationen) ermittelt werden.

D: Die Formel gilt nur für Abstände $d > \frac{\lambda}{2\cdotπ}$ bei horizontal polarisierten Antennen. Bei kleineren Abständen und immer bei vertikal polarisierten Antennen muss der Sicherheitsabstand durch zum Beispiel Feldstärkemessungen oder Nahfeldberechnungen (Simulationen) ermittelt werden.

Fernfeld

Personenschutz bei Richtantennen

AK105: An der Spitze Ihres Antennenmastes befindet sich eine Yagi-Uda-Antenne, deren Sicherheitsabstand in Hauptstrahlrichtung 20 m beträgt. Schräg unterhalb dieser Antenne befindet sich ein nicht kontrollierbarer Bereich. Sie ermitteln einen kritischen Winkel von 40°. Das vertikale Strahlungsdiagramm der Antenne weist bei diesem Winkel eine Dämpfung von 6 dB auf. Auf welchen Wert verringert sich dann rechnerisch der Sicherheitsabstand bei 40°?

A: Er verringert sich nicht.

B: Er verringert sich auf 10 m.

C: Er verringert sich auf 5,02 m.

D: Er verringert sich auf 3,33 m.

Fragen?


Links zu diesem Foliensatz