Digitale Übertragungsverfahren

Analog vs. Digital

Bei der Informationsübertragung unterscheidet man grundsätzlich zwischen analogen und digitalen Verfahren.

  • Digital: in Stufen, nur bestimmte Werte, keine Werte dazwischen
  • Analog: kontinuierlich, beliebige Zwischenwerte

Binäres Zahlensystem

Dezimalsystem

  • Menschen sind es gewohnt, die zehn Ziffern von 0 bis 9 zu benutzen
  • Man spricht von einem Zehner- oder Dezimalsystem
EA201: Was ist der Vorteil des binären Zahlensystems gegenüber dem dezimalen Zahlensystem in elektronischen Schaltungen?

Die binären Ziffern 0 und 1 können als zwei elektrische Zustände dargestellt und dadurch einfach mittels Schaltelementen (z. B. Transistoren) verarbeitet werden.

Der Zwischenbereich zwischen 0 und 1 kann von analogen Verstärkerschaltungen mit hoher Genauigkeit abgebildet werden.

Die Genauigkeit des binären Systems (mit zwei Ziffern) ist um den Faktor 5 höher als die des Dezimalsystems (mit 10 Ziffern).

Je Ziffer kann mehr als ein Bit an Information übertragen werden (1 binäre Ziffer erlaubt die Übertragung von 8 Dezimalziffern).

  • Mit einem Bit sind zwei Werte möglich (0 und 1)
  • Mit zwei Bits schon vier (00, 01, 10 und 11) und mit jedem weiteren Bit jeweils doppelt so viele
  • Mathematisch ausgedrückt: Mit n Bits lassen sich 2n verschiedene Zahlen darstellen
EA202: Wie viele unterschiedliche Zustände können mit einer Dualzahl dargestellt werden, die aus einer Folge von 3 Bit besteht?

8

16

6

4

EA203: Wie viele unterschiedliche Zustände können mit einer Dualzahl dargestellt werden, die aus einer Folge von 4 Bit besteht?

6

16

4

8

EA204: Wie viele unterschiedliche Werte können mit einer fünfstelligen Dualzahl dargestellt werden?

128

32

64

5

Umwandlung

Binärzahlen in Dezimale Zahlen

27 26 25 24 23 22 21 20
128 64 32 16 8 4 2 1
1 0 0 0 1 1 1 0

128 + 8 + 4 + 2 = 142

EA205: Berechnen Sie den dezimalen Wert der Dualzahl 01001110. Die Dezimalzahl lautet:

142

248

156

78

EA206: Berechnen Sie den dezimalen Wert der Dualzahl 10001110. Die Dezimalzahl lautet:

142

78

156

248

EA207: Berechnen Sie den dezimalen Wert der Dualzahl 10011100. Die Dezimalzahl lautet:

142

248

156

78

EA208: Berechnen Sie den dezimalen Wert der Dualzahl 11111000. Die Dezimalzahl lautet:

248

78

142

156

Morsetelegrafie

  • Ein- und Ausschalten eines Trägers
  • Einführung eines Morsealphabets 1838 durch Samuel Morse, optimiert durch Friedrich Clemens Gerke
  • Morseprüfung lange Zeit Vorschrift für Funkamateure auf Kurzwelle
  • Seit Mitte der 1990er legen Länder fest, ob Morseprüfung notwendig ist
  • Erst seit 2003 ist die Morseprüfung in Deutschland freiwillig
           
A ▄▄▄ K ▄▄▄▄▄▄ U ▄▄▄
B ▄▄▄ L ▄▄▄ V ▄▄▄
C ▄▄▄▄▄▄ M ▄▄▄▄▄▄ W ▄▄▄▄▄▄
D ▄▄▄ N ▄▄▄ X ▄▄▄▄▄▄
E O ▄▄▄▄▄▄▄▄▄ Y ▄▄▄▄▄▄▄▄▄
F ▄▄▄ P ▄▄▄▄▄▄ Z ▄▄▄▄▄▄
G ▄▄▄▄▄▄ Q ▄▄▄▄▄▄▄▄▄ Ä ▄▄▄▄▄▄
H R ▄▄▄ Ö ▄▄▄▄▄▄▄▄▄
I S Ü ▄▄▄▄▄▄
J ▄▄▄▄▄▄▄▄▄ T ▄▄▄ ▄▄▄▄▄▄
           
0 ▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄ 5 / ▄▄▄▄▄▄
1 ▄▄▄▄▄▄▄▄▄▄▄▄ 6 ▄▄▄ . ▄▄▄▄▄▄▄▄▄
2 ▄▄▄▄▄▄▄▄▄ 7 ▄▄▄▄▄▄ , ▄▄▄▄▄▄▄▄▄▄▄▄
3 ▄▄▄▄▄▄ 8 ▄▄▄▄▄▄▄▄▄ ? ▄▄▄▄▄▄
4 ▄▄▄ 9 ▄▄▄▄▄▄▄▄▄▄▄▄ = ▄▄▄▄▄▄
   
Unterbrechung (BK) ▄▄▄▄▄▄▄▄▄
Ende des Durchgangs (AR) ▄▄▄▄▄▄
Ende der Sendung (SK) ▄▄▄▄▄▄
Korrektur
VA304: Was ist in den Radio Regulations (RR) bezüglich der Morsequalifikation für Funkamateure festgelegt?

In den Radio Regulations (RR) werden bezüglich der Morsequalifikation keine Regelungen getroffen.

Die nationale Verwaltung eines jeden Landes legt eigenständig fest, ob eine Morseprüfung erforderlich ist.

Bei einer Sendeleistung von mehr als 100 W benötigt der Funkamateur den Nachweis einer erfolgreich abgelegten Morseprüfung.

Wer Frequenzen unter 30 MHz nutzen will, muss eine Morseprüfung ablegen.

Computersteuerung

Steuersignale

  • Übertragung von Audio- sowie Steuersignalen (CAT) zwischen Computer und Transceiver
  • Z.B. Transceiver auf Sendung schalten und Signal vom Computer übertragen

Datenanschluss

  • Hinter dem Mikrofonanschluss im Funkgerät können Verstärker- und Filterstufen für Sprachübertragung liegen → ungeeignet für Datenübertragung
  • Eigener Datenanschluss am Transceiver
  • Lässt Signale vom Computer unverfälscht passieren
NF114: Wie kann eine Verbindung zwischen Funkgerät und Computer für digitale Übertragungsverfahren (z. B. FT8 oder WSPR) hergestellt werden?

Der HF-Anschluss (z. B. Antennenausgang) des Funkgeräts wird mittels eines Y-Kabels mit einer geeigneten Datenschnittstelle des Computers verbunden.

Es wird ein Software-Modem installiert und der ALC-Anschluss des Funkgeräts direkt mit dem Computer verbunden (ggf. auch mittels Adapter).

Eine Audioverbindung (NF-Signal oder digital z. B. per USB-Kabel) wird zwischen Computer und Funkgerät hergestellt oder es wird ein Hardware-Modem verwendet.

Der ALC-Anschluss des Funkgeräts wird mittels eines Hardware-Modems mit Audio- oder Datenanschlüssen des Computers verbunden.

NF116: Manche Transceiver verfügen über eine sogenannte CAT-Schnittstelle. Dieser Anschluss dient dazu, ...

durch Umgehung von Verstärker- und Filterstufen ein NF-Signal (z. B. für DV oder POCSAG) möglichst verzerrungsfrei abzugreifen oder einzuspeisen.

mittels eines seriellen Kommunikationsprotokolls den Transceiver z. B. mit einem Computer zu steuern oder Werte abzufragen, z. B. Frequenz, Sendeleistung oder PTT.

das empfangene HF-Signal möglichst ungefiltert an einen Computer zur Weiterverarbeitung mittels digitaler Signalverarbeitung auszuleiten.

ohne weitere Beschaltung einen Drehwinkelgeber (Encoder) oder ein Potentiometer zur präzisen Frequenzeinstellung anzuschließen.

NF117: Welcher unerwünschte Effekt kann eintreten, wenn ein Funkgerät mittels Computer gesteuert wird?

Der Vorverstärker ist außer Funktion, wodurch Nachbarkanäle und Frequenzen in anderen Bändern gestört werden könnten.

Das Funkgerät könnte unerwartet auf Sendung schalten und somit unerwünschte Aussendungen verursachen oder Menschen in Gefahr bringen.

Der Computer kann wie ein Elektrolytkondensator im Antennenkreis wirken und somit die Sendefrequenz verschieben.

Die automatische Pegelregelung (ALC) könnte ausgelöst werden und andere digitale Geräte stören.

NF115: Manche FM-Transceiver verfügen über einen analogen Datenanschluss (z. B. mit DATA beschriftet oder als 9600-Port bezeichnet). Dieser dient im Wesentlichen dazu, ...

mittels eines seriellen Kommunikationsprotokolls den Transceiver z. B. mit einem Computer zu steuern und Werte abzufragen, z. B. Frequenz, Sendeleistung oder PTT.

durch Umgehung von Verstärker- und Filterstufen ein NF-Signal (z. B. für DV oder POCSAG) möglichst verzerrungsfrei abzugreifen oder einzuspeisen.

das empfangene HF-Signal möglichst ungefiltert an einen Computer auszuleiten und mittels digitaler Signalverarbeitung weiterzuverarbeiten.

ohne weitere Beschaltung einen Drehwinkelgeber (Encoder) oder ein Potentiometer zur präzisen Frequenzeinstellung anzuschließen.

Funkfernschreiben

Funkfernschreiber

Abbildung 233: Funkfernschreiber

Betrieb

  • Beide Funkpartner nutzen das gleiche Übertragungsverfahren (z.B. JS8, PSK, RTTY)
  • Gleiche Parameter müssen gesetzt sein

In einem Gespräch sieht dieses folgendermaßen aus:

CQ CQ CQ DE DL2AB DL2AB DL2AB PSE K
DL2AB DE DL1PZ K
DL1PZ DE DL2AB = UR RST 599 599 = DL1PZ DE DL2AB K
DL2AB DE DL1PZ = TNX RPRT, UR 479 479 BK
BK QSL = VY 73 DE DL2AB SK
R 73 DE DL1PZ SK
Abkz. Bedeutung
BK Unterbrechung der Sendung; Formlose Übergabe
CQ Allgemeiner Anruf (vom Englischen „Seek You“)
DE von
K Aufforderung zum Senden
PSE Bitte (vom Englischen „Please“)
QSL Ich bestätige den Empfang
R Received (Empfangsbestätigung)
RPRT Rapport (vom Englischen „Report“)

Teil 1 unseres Beispiel-Gesprächs:

CQ CQ CQ DE DL2AB DL2AB DL2AB PSE K
DL2AB DE DL1PZ K

Allgemeiner Anruf von DL2AB – Bitte Kommen!

DL2AB von DL1PZ – Kommen!

Teil 2 unseres Beispiel-Gesprächs:

DL1PZ DE DL2AB = UR RST 599 599 = DL1PZ DE DL2AB K
DL2AB DE DL1PZ = TNX RPRT, UR 479 479 BK

DL1PZ von DL2AB. Dein Signal ist mit dem RST-Wert 599, ich wiederhole, 599. DL1PZ von DL2AB – Kommen!

DL2AB von DL1PZ. Danke für den RST-Rapport, dein Signal ist 479, ich wiederhole, 479. Zurück zu dir!

Teil 3 unseres Beispiel-Gesprächs:

BK QSL = VY 73 DE DL2AB SK
R 73 DE DL1PZ SK

Hier bin ich wieder. Ich bestätige den Empfang. Sehr viele Grüße von DL2AB. Ende der Verbindung.

Verstanden. Viele Grüße von DL1PZ. Ende der Verbindung.

NE401: Was sollten Sie bei der Übertragung eines Textes per Funkfernschreiben beachten?

Sende- und Empfangsstation müssen das gleiche Übertragungsverfahren (z. B. JS8, PSK, RTTY) und ggf. die gleichen Verfahrensparameter verwenden.

Sende- und Empfangsstation müssen die gleiche Zeitzoneneinstellung (z. B. Sommerzeit) aufweisen, damit die Übertragung erfolgreich sein kann.

Die Übertragung sollte bevorzugt mit einem schnellen Verfahren stattfinden, damit die Amateurfunkbänder nicht unnötig belastet werden.

Die Übertragung sollte bevorzugt während der Abend- und Nachtstunden stattfinden, da die Frequenzen tagsüber für Sprechverbindungen freigehalten werden.

BB101: Warum werden insbesondere in der Telegrafie (z. B. CW, JS8, RTTY) betriebliche Abkürzungen und Q-Gruppen verwendet?

Sie werden als Kennung beim Amateurfunkpeilen genutzt, um die Sender zu kennzeichnen.

Sie werden bei Verbindungen über Amateurfunksatelliten benutzt, um den Dopplereffekt durch kürzere Durchgänge zu vermeiden.

Der Informationsgehalt einer Aussendung wird verschleiert und ist damit für Unbeteiligte nicht verständlich.

Der Betriebsablauf wird vereinfacht und der zu übertragende Informationsgehalt pro Zeiteinheit optimiert.

BB110: Was bedeutet „R“ am Anfang eines Durchgangs in Telegrafie?

Rapport (Bericht)

Readability (Lesbarkeit)

Received (empfangen)

Repeat (wiederhole)

BB109: Was bedeutet „K“ am Ende eines Durchgangs in Telegrafie?

Aufforderung zum Senden

Bitte warten

Unterbrechung der Sendung

Beendigung des Funkverkehrs

BB108: Was bedeutet die Betriebsabkürzung „BK“ in Telegrafie?

Bitte warten; wird auch zur schnellen Anforderung eines Rapports genutzt

Signal zur Unterbrechung einer laufenden Sendung; wird auch zur formlosen Übergabe genutzt

Alles richtig verstanden; wird auch zur schnellen Beendigung eines Funkkontakts genutzt

Beendigung des Funkverkehrs; wird auch zur formlosen Begrüßung genutzt

BE112: Wie gestalten Sie beispielsweise als „DL2AB“ einen allgemeinen Anruf in Telegrafie?

CQ CQ CQ FRM DL2AB DL2AB DL2AB pse k

CQ QRZ CQ QRZ CQ QRZ DE DL2AB DL2AB DL2AB pse k

CQ CQ CQ DE DL2AB DL2AB DL2AB pse k

QRZ QRZ QRZ DE DL2AB DL2AB DL2AB pse k

Morsetelegrafie

  • Auf die richtige Geschwindigkeit achten
  • Schnell gegebene Morsezeichen brauchen viel Übung zum Verstehen
  • Gegenstelle nicht mit der Geschwindigkeit überfordern
  • Faustregel: Nicht schneller geben, als man selbst aufnehmen kann
BE117: Mit welcher Geschwindigkeit sollten Sie einen Anruf in Morsetelegrafie beantworten? In der Regel antworte ich ...

genauso schnell oder langsamer als der Anruf.

mit einem Gebetempo von maximal 60 CPM.

mit dem höchsten Tempo, das ich fehlerfrei geben kann.

mit meiner gewohnten Geschwindigkeit.

BE118: Was sollten Sie hinsichtlich der Geschwindigkeit bei Morsetelegrafie beachten? Ich gebe in der Regel ...

nicht schneller, als ich auch aufnehmen kann, und passe mich an langsamere Stationen an.

im international festgelegten Einheitstempo von 12 WPM, um eine automatische Dekodierung zu ermöglichen.

so schnell ich kann, damit es nicht zu unnötigen Verzögerungen im Betriebsablauf kommt.

in dem Tempo, das mir am besten liegt. Andere müssen sich an mich anpassen.

Digimode per SSB

Bandbreite von Digimodes

  • Im Gegensatz zur Sprache benötigen viele Digimodes weniger Bandbreite
  • Z.B. BPSK31 mit 31,25 Hz oder FT8 mit 50 Hz
  • Die erzeugten Töne werden mittels Kurzwelle in SSB moduliert
  • Die Bandbreite des ausgestrahlten Signals bleibt dabei gleich
EE403: Bei der Aussendung eines digitalen Signals mittels eines Funkgerätes in SSB-Einstellung beträgt die NF-Bandbreite des in das Funkgerät eingespeisten Signals 50 Hz. Wie groß ist die HF-Bandbreite?

50 Hz

$\sqrt{2} \cdot$ 50 Hz

100 Hz

25 Hz

EE402: Welche Modulation wird am Transceiver eingestellt, um ein schmalbandiges digitales Signal (z. B. BPSK31 oder FT8), das per Audiosignal als NF eingespeist wird, unter Beibehaltung der Bandbreite in HF umzusetzen?

Frequenzmodulation (FM)

Einseitenbandmodulation (SSB)

Amplitudenmodulation (AM)

Phasenmodulation (PM)

Empfang von Digimodes

  • Beim Empfang von SSB können in der üblichen Bandbreite von 2,4 kHz mehrere schmalbandige Digimodes empfangen werden
  • FT8: 2400 Hz ÷ 50 Hz = max. 48 Signale
  • BPSK31: 2400 Hz ÷ 31,25 Hz = max. 76 Signale
  • Am Computer wird dann das gewünschte Digimode-Signal selektiert
EE404: Wie viele digitale Signale unterschiedlicher Stationen können mit einem analogen Funkgerät (2,4 kHz SSB-Bandbreite) und einem über die Audio-Schnittstelle angeschlossenen Computer gleichzeitig empfangen und dekodiert werden?

Es können maximal zwei Signale empfangen werden (eines pro Seitenband).

Es kann maximal ein Signal empfangen werden, da ein Seitenband genutzt wird.

Es kann maximal ein Signal empfangen werden, außer das Funkgerät verfügt über doppelte Kanalbandbreite.

Es können je nach Art der Signale ein oder mehrere Signale empfangen werden.

SSTV

  • Slow-Scan Television ist die Übertragung von Standbildern mittels Digimodes
  • Zeilenweise Übertragung von Bildern
  • Verschiedene Verfahren mit verschiedenen Auflösungen und Übertragungsgeschwindigkeiten
  • Bandbreite unter 3kHz und in Kurzwellenbändern nutzbar

ATV

  • Amateur Television ist die Übertragung von Bewegtbildern
  • Benötigt mehrere MHz Bandbreite (6 MHz und mehr)
  • Deshalb nur ab 70 cm Band aufwärts nutzbar
EE415: Welcher Unterschied zwischen ATV und SSTV ist richtig?

SSTV belegt eine größere Bandbreite als ATV.

SSTV wird nur auf Kurzwelle, ATV auf UKW verwendet.

SSTV überträgt Standbilder, ATV bewegte Bilder.

SSTV ist schwarzweiß, ATV in Farbe.

9600-Port

  • Zur Umgehung von Filtern bieten manche FM-Funkgeräte einen separaten Port für Digimodes
  • Dieser ist oft mit DATA oder 9600 beschriftet
  • 9600 entsprechend der Datenrate in Baud, die damit übertragen werden kann
  • Daran wird direkt das TNC (Terminal Node Controller) vom Computer angeschlossen
  • Heute oft direkt als USB-Anschluss ausgeführt
  • Sowohl Senden als auch Empfang findet ohne NF-Filter und NF-Endstufe statt
  • Es wird direkt der FM-Modulator oder FM-Demodulator angesprochen
  • Signale werden nicht verzerrt
  • Wurde früher für Packet Radio verwendet
  • Heute für moderne und freie Modi wie M17
EF309: Welcher der eingezeichneten Punkte in einem FM-Sender ist für die Zuführung eines 9600-Baud-Datensignals am besten geeignet?

Punkt 2

Punkt 1

Punkt 4

Punkt 3

EF219: Manche FM-Transceiver verfügen über einen analogen Datenanschluss (z. B. mit DATA beschriftet oder als 9600-Port bezeichnet). Welcher Punkt im dargestellten Empfangszweig wird über diesen Anschluss üblicherweise herausgeführt?

Punkt 2

Punkt 3

Punkt 1

Punkt 4

Übersteuerung

  • Zu starkes Audiosignal am Eingang eines Senders → Oberschwingungen
  • Links ist in Gelb das erwünschte Signal
  • Rechts davon die unerwünschten Oberschwingungen
  • Zu Verzerrungen durch Übersteuerung kann es auch im Sendeverstärker kommen
  • Um das zu verhindern, verfügen viele Funkgeräte über eine automatische Pegelregelung (englisch: Automatic Level Control, ALC) → regelt Verstärkung automatisch runter
  • Bei digitalen Übertragungsverfahren kann die ALC jedoch Problemen führen
  • Das Signal könnte je nach Lautstärke oder Frequenz die ALC zu verschiedenen Zeitpunkten unterschiedlich stark auslösen → Amplitude wird unerwünscht verändert
  • ALC-Probleme hängen von verschiedenen Faktoren ab
  • Übertragungsverfahren
  • Umsetzung der ALC im Transceiver (Reaktions- und Haltezeit)
  • Anzeige der ALC im Transceiver
  • → greift die ALC nicht ein, erzeugt sie keine Probleme
EJ218: Wie sollte bei digitalen Übertragungsverfahren (z. B. FT8, JS8, PSK31) der NF-Pegel am Eingang eines Funkgerätes mit automatischer Pegelregelung (ALC) im SSB-Betrieb eingestellt sein, um Störungen zu vermeiden?

Die NF-Lautstärke muss $-\infty$ dB (also Null) betragen.

Alle Bedienelemente sind auf das Maximum einzustellen.

So niedrig, dass die automatische Pegelregelung (ALC) nicht eingreift.

18 dB höher als die Lautstärke, bei der die automatische Pegelregelung (ALC) eingreift.

EJ217: Was kann auftreten, wenn bei digitalen Übertragungsverfahren (z. B. RTTY, FT8, Olivia) die automatische Pegelregelung (ALC) eines Funkgerätes im SSB-Betrieb eingreift?

Störungen von Stationen auf anderen Frequenzbändern

Störungen von nachfolgenden Sendungen auf derselben Frequenz

Störungen von Übertragungen auf Nachbarfrequenzen

Störungen von Computern oder anderen digitalen Geräten

EJ219: Was ist zu tun, wenn es bei digitalen Übertragungsverfahren zu Störungen kommt, weil die automatische Pegelregelung (ALC) eines Funkgerätes im SSB-Betrieb eingreift?

Das Oberwellenfilter sollte abgeschaltet werden.

Es sollte mit der RIT gegengesteuert werden.

Die Sendeleistung sollte erhöht werden.

Der NF-Pegel am Eingang des Funkgerätes sollte reduziert werden.

Automatische Empfangsberichte

  • Mittels Digimodes empfangene Rufzeichen können an Plattformen geschickt werden
  • Diese lassen sich auf einer Karte mit empfangenen Band darstellen
  • Zum Testen der eigenen Ausbreitungsbedingungen

WSPR

  • Weak Signal Progagation Reporter Network
  • QRP-Digimode, der rein zum Testen der eigenen Ausbreitungsbedingungen entwickelt wurde
  • Es ist kein 2-Wege-QSO möglich
  • Sehr langsame Übertragung mit hoher Fehlerkorrektur
  • 1 Minute Senden, mehrere Minuten empfangen
  • Ergebnisse werden an Server geschickt und lassen sich auf WSPRnet darstellen
EE405: Wie können Sie automatische Empfangsberichte zu Aussendungen erhalten, z. B. um die Reichweite ihrer Sendeanlage zu testen?

Durch Aussendung Ihres Rufzeichens mittels Telegrafie (5 WPM) mit dem Zusatz „AUTO RSVP“ (vom französischen „répondez s'il vous pla\^it“) und Abhören der 10 kHz höher gelegenen Frequenz

Durch Aussendung einer Nachricht mittels geeignetem digitalen Verfahren (z. B. CW oder WSPR) unter Angabe Ihrer E-Mail-Adresse und der Anzahl der maximal gewünschten Empfangsberichte

Durch Aussendung einer Nachricht mittels geeignetem digitalen Verfahren (z. B. CW oder WSPR) und Suche nach Ihrem Rufzeichen auf passenden Internetplattformen

Durch Aussendung Ihres Rufzeichens mittels Telegrafie (12 WPM) mit dem Zusatz „R“ (für Report) und Abhören der 10 kHz tiefer gelegenen Frequenz

Digital Voice (DV)

  • Auch Sprache kann digital übertragen werden
  • z. B. mit den Übertragungsverfahren DMR, D-Star, C4FM und M17
  • Sprachsignale werden vor der Übertragung in einen Datenstrom umgewandelt

TDMA

Time Division Multiple Access -- Zeitmultiplexverfahren

  • Übertragung mehrerer Datenströme in schnell abwechselnder Folge
  • Zwei oder mehr Sprachverbindungen nutzen quasi gleichzeitig dieselbe Frequenz

Einstellungen

Es sind für digitale Sprache oft mehr Einstellungen zu berücksichtigen als zum Beispiel bei einer FM-Verbindung. Zum Beispiel:

  • Sprechgruppe (Talkgroup)
  • Raum oder Reflektor zum Zusammenschalten von Relaisfunkstellen
  • TDMA-Zeitschlitz
  • Color-Code
NE404: Welche Übertragungsverfahren für digitalen Sprechfunk sind im Amateurfunk gebräuchlich?

SSB-Sprechfunk, FT8, DMR, PSK31, SSTV

DMR, D-STAR, C4FM, M17, FreeDV

AM-Sprechfunk, FM-Sprechfunk, SSB-Sprechfunk, Olivia, SSTV

FM-Sprechfunk, RTTY, D-STAR, JS8, Olivia

NE307: Welche Übertragungsverfahren werden bei VHF/UHF-Handfunkgeräten üblicherweise verwendet?

AM-Sprechfunk, C4FM, FT8

CW-Morsetelegrafie, FT8, D-STAR

FM-Sprechfunk, DMR, D-STAR

SSB-Sprechfunk, DMR, RTTY

NE403: Ist es bei bestimmten digitalen Verfahren zur Sprachübertragung (z. B. DMR oder TETRA) möglich, mehrere Sprechverbindungen gleichzeitig auf derselben Frequenz innerhalb eines Empfangsgebiets abzuwickeln?

Nein. Sprachübertragungen können nicht in Datenpakete aufgeteilt werden.

Ja. Die Sprachdaten werden abwechselnd in periodischen, kurzen Zeitschlitzen übertragen.

Nein. Zeitgleich stattfindende digitale Übertragungen stören sich prinzipbedingt gegenseitig.

Ja. Die Sendeleistung wird zur Verbesserung der digitalen Fehlerkorrektur erhöht.

NE402: Sie möchten an einer Funkrunde mittels digitaler Sprachübertragung (z. B. C4FM, DMR oder D-Star) über ein Repeaternetzwerk teilnehmen. Worauf müssen Sie neben der Wahl des Übertragungsverfahrens, der Frequenz und der Modulation achten?

Alle Stationen müssen die gleiche Stationskennung, z. B. DMR-ID, einstellen.

Sie müssen geeignete Parameter, z. B. Reflektor, Zeitschlitz oder Color-Code, wählen.

Alle Stationen müssen sich in Funkreichweite desselben Repeaters befinden.

Sie müssen die gleiche Firmwareversion wie das Repeaternetzwerk verwenden.

Paketvermittelte Netzwerke

  • Das HAMNET, das Netzwerk nur für Funkamateure, basiert auf dem Internet-Protokoll (IP).
  • Deswegen kann man das Hamnet mit der gleichen Software, die auch für das Internet verwendet wird, nutzen.
  • Im einfachsten Fall ist das ein Webbrowser.
  • Das Internet-Protokoll (IP) weist den beteiligten Computern IP-Adressen zu, damit sie sich gegenseitig erreichen können.
  • IP-Adressen werden als vier Dezimalzahlen mit einem Punkt dazwischen geschrieben. Beispiel: 141.17.5.18
  • Jede Dezimalzahl hat eine Länge von 8 Bit, deswegen ist die größtmögliche Zahl 255 (binär: 11111111).
  • IP-Adressen sind in einen Netz- und einen Hostanteil aufgeteilt.
  • Bei allen Computern, die sich im selben Netzwerk befinden, ist der Anfang der IP-Adressen gleich, diesen Anfang nennt man Netzanteil.
  • Der Netzanteil ist unterschiedlich groß, je nachdem wie viele Computer (Hosts) im Netzwerk verwaltet werden sollen.

Beispiele:

10.100.234.22 (kleiner Netzanteil, großer Hostanteil)

192.168.1.252 (großer Netzanteil, kleiner Hostanteil)

Dieses Prinzip kennt man vom Telefonnetz. Die großen Städte haben kürzere Vorwahlen als kleine Städte.

Abbildung 241: IPv4-Adresse und Netzmaske in Dezimal- und Dualschreibweise
  • Eine Subnetzmaske gibt die Aufteilung einer IP-Adresse in Netz- und Hostanteil an, indem sie alle Bits des Netzanteils als 1 darstellt.
  • Es zwei Möglichkeiten dieses niederzuschreiben, Beispiel für einen Netzanteil von 24:
  • 255.255.255.0, was binär 11111111.11111111.11111111.00000000 ist.
  • Die Schreibweise mit dem Schrägstrich, zum Beispiel 192.168.111.90/24

[picture:706:netzwerk:Ausschnitt aus einer Netzwerk-Infrastruktur

  • Netzwerkgeräte können nur innerhalb ihres eigenen lokalen Netzwerks direkt miteinander kommunizieren.
  • Man erkennt sie daran, dass sich aus ihrer eigenen IP-Adresse und Subnetzmaske derselbe Netzanteil ergibt wie beim Partner.
  • In allen anderen Fällen schicken sie die Daten an einen Router. Das ist eine Zwischenstation, die zwei oder mehr Netzwerke miteinander verbindet, um die Datenpakete weiterzuleiten.
EE412: Wie können Informationen innerhalb eines paketvermittelten Netzes zwischen zwei Stationen ausgetauscht werden, die sich nicht direkt erreichen können?

Durch wiederholte Aussendung (Paketwiederholung)

Durch Zusammenfassung von Übertragungen (Paketdefragmentierung)

Durch Entpacken vor der Sendung (Paketdekompression)

Durch Weiterleitung über Zwischenstationen (Paketweiterleitung)

EE414: Kann das Internetprotokoll (IP) im Amateurfunk verwendet werden?

Nein, Internetnutzern würde so Zugang zum Amateurfunkband ermöglicht.

Nein, die benötigte Bandbreite steht im Amateurfunk nicht zur Verfügung.

Ja, es ist nicht auf das Internet beschränkt.

Ja, die Kodierung des Amateurfunkrufzeichens erfolgt in der Subnetzmaske.

EE413: Was ergibt sich aus der eingestellten IP-Adresse und Subnetzmaske einer Kommunikationsschnittstelle beim Internetprotokoll (IP)?

Das Standardgateway und die maximale Anzahl der Zwischenstationen (Hops)

Die Protokoll- und Portnummer des über die Schnittstelle verwendeten Protokolls

Der direkt (d. h. ohne Router) über die Schnittstelle erreichbare Adressbereich

Die Gegenstelle und die durch das Teilnetz verwendete Bandbreite

Amplituden- und Frequenzumtastung (ASK, FSK)

  • Genauso wie es verschiedene analoge Modulationsverfahren gibt, gibt es auch verschiedene digitale Modulationsverfahren.
  • Die grundlegenden Möglichkeiten ein Signal zu modulieren, also auf einen Hochfrequenzträger aufzuprägen, sind dieselben: Veränderung der Amplitude, der Frequenz oder der Phase des Trägers.
  • Beim unmodulierten Träger hingegen bleiben Amplitude, Frequenz und Phasenlage konstant.
  • Bei der Amplitudenumtastung (Amplitude Shift Keying, ASK) wird im einfachsten Fall zwischen zwei Amplituden gewechselt.
Abbildung 242: Amplitudenumtastung (Amplitude-shift Keying)
  • Bei der Frequenzumstastung (Frequency Shift Keying, FSK) wechselt der Sender zwischen bestimmten Frequenzen.
Abbildung 243: Frequenzumtastung (Frequency-shift Keying)
  • Bei der Phasenumtastung (Phase Shift Keying, PSK) wechselt der Sender zwischen bestimmten Phasenlagen.
Abbildung 244: Phasenumtastung (Phase-shift Keying)
EE406: Welches der folgenden Diagramme zeigt einen erkennbar durch Amplitudenumtastung (ASK) modulierten Träger?
EE407: Welches der folgenden Diagramme zeigt einen erkennbar durch Frequenzumtastung (FSK) modulierten Träger?
AE401: Welches der folgenden Diagramme zeigt einen erkennbar durch Phasenumtastung (PSK) modulierten Träger?
EE101: Welches der folgenden Diagramme zeigt einen unmodulierten Träger?

Phasenumtastung (PSK)

Symbolumschaltung und Bandbreite

  • Als Symbol werden in der Digitaltechnik die verschiedenen Zeicheneinheiten zur Übertragung des Informationsgehaltes bezeichnet.
  • Die Anzahl der pro Zeitspanne übertragenen Symbole ist die Symbolrate und wird in der Einheit Baud ausgedrückt.
  • Bei jeder Umschaltung zwischen zwei Symbolen wird die Amplitude, Frequenz oder Phase eines Trägers geändert.
  • Je schneller Amplitude, Frequenz oder Phase verändert werden, umso breitbandiger wird das erzeugte Signal.
AE415: Welche Auswirkung hat eine Erhöhung der Umschaltgeschwindigkeit zwischen verschiedenen Symbolen bei digitalen Übertragungsverfahren auf die benötigte Bandbreite? Die Bandbreite ...

steigt im oberen und sinkt im unteren Seitenband.

steigt.

bleibt gleich.

sinkt.

AE214: Welches dieser amplitudenmodulierten Signale belegt die geringste Bandbreite?
  • Von der Morsetelegrafie kennen wir bereits Tastklicks, die breitbandige Störungen darstellen.
  • Sie entstehen, wenn beim Drücken bzw. Loslassen der Morsetaste der Träger plötzlich ein- bzw. ausgeschaltet wird.
AJ221: In den nachfolgenden Bildern sind mögliche Signalverläufe des Senderausgangssignals bei der CW-Tastung dargestellt. Welcher Signalverlauf führt zu den geringsten Störungen?
AJ220: Diese Modulationshüllkurve eines CW-Senders sollte vermieden werden, da ...

die ausgesendeten Signale schwierig zu lesen sind.

wahrscheinlich Tastklicks erzeugt werden.

während der Aussetzer Probleme im Leistungsverstärker entstehen könnten.

die Stromversorgung überlastet wird.

Mehrwertige Verfahren

  • Viele digitale Modulationsverfahren verwenden mehr als zwei Symbole.
  • So funktioniert zum Beispiel die 4-Fach-Amplitudenumtastung (4ASK) mit vier unterschiedlichen Amplituden, 25 %, 50 %, 75 %, 100 % des Maximums.
  • So lassen sich zwei Bits zu einem Symbol zusammenfassen und gleichzeitig übertragen.
Abbildung 245: Quaternäre Amplitudenumtastung (Quaternary Amplitude-shift Keying)
  • Dieses Prinzip lässt sich auf die Frequenz- und Phasenumtastung übertragen.
  • Eine einfache Phasenumtastung (Binary Phase-Shift Keying, BPSK) verwendet nur zwei verschiedene Phasenlagen und kann daher nur ein Bit gleichzeitig senden.
  • Die Quadraturphasenumtastung (Quadrature Phase-Shift Keying, QPSK) hingegen nutzt vier verschiedene Phasenlagen (0 °, 90 °, 180 ° und 270 °) und überträgt somit zwei Bits in jedem Schritt.
AE402: Was unterscheidet BPSK- und QPSK-Modulation?

Bei BPSK werden der I- und der Q-Anteil eines I/Q-Signals vertauscht, bei QPSK nicht.

Mit BPSK wird ein Bit pro Symbol übertragen, mit QPSK zwei Bit pro Symbol.

Mit QPSK wird ein Bit pro Symbol übertragen, mit BPSK zwei Bit pro Symbol.

Bei QPSK werden der I- und der Q-Anteil eines I/Q-Signals vertauscht, bei BPSK nicht.

  • Da bei Verfahren wie QPSK mehr als ein Bit pro Symbol übertragen wird, müssen wir mit den Einheiten aufpassen.
  • Werden nur zwei Symbole verwendet und somit jedes Bit einzeln gesendet, entspricht die Symbolrate in Baud der Datenrate in Bit/s.
  • Werden jedoch mehr Symbole verwendet und somit mehrere Bits gleichzeitig übertragen, ist die Datenrate höher als die Symbolrate.
  • Die Formel $C = R_{ s } \cdot n$ stellt den Zusammenhang dar:

C → Datenübertragungsrate in Bit/s

$R_{ s }$ → Symbolrate in Baud

n → Symbolgröße in Bit/Symbol

AA104: Welche Einheit wird üblicherweise für die Symbolrate verwendet?

Baud (Bd)

Dezibel (dB)

Bit pro Sekunde (Bit/s)

Hertz (Hz)

Beispiele:

RTTY: Umschaltung zwischen zwei Symbolfrequenzen, so dass pro Symbol ein Bit (0 oder 1) übertragen werden kann.

→ Datenrate = Symbolrate

FT4: Umschaltung zwischen vier Symbolfrequenzen, so dass pro Symbol zwei Bit (00, 01, 10 oder 11) übertragen werden können.

→ Datenrate = 2 $\cdot$ Symbolrate

AE405: Bei einem digitalen Übertragungsverfahren (z. B. RTTY) wird die Frequenz eines Senders zwischen zwei Symbolfrequenzen (z. B. 14072,43 kHz und 14072,60 kHz) umgetastet, so dass pro Symbol ein Bit (0 oder 1) übertragen werden kann. Die Symbolrate beträgt 45,45 baud. Welcher Datenrate entspricht das?

181,8 Bit/s

22,725 Bit/s

45,45 Bit/s

90,9 Bit/s

AE406: Bei einem digitalen Übertragungsverfahren (z. B. FT4) wird die Frequenz eines Senders zwischen vier Symbolfrequenzen (z. B. 14081,20 kHz, 14081,40 kHz, 14081,61 kHz und 14081,83 kHz) umgetastet, so dass pro Symbol zwei Bit (00, 01, 10 oder 11) übertragen werden können. Die Symbolrate beträgt 23,4 baud. Welcher Datenrate entspricht das?

11,7 Bit/s

93,6 Bit/s

23,4 Bit/s

46,8 Bit/s

Quadraturamplitudenmodulation (QAM)

  • Es scheint zunächst nahe zu liegen, die Anzahl der Symbole möglichst groß zu wählen, damit pro Symbol möglichst viele Informationen übertragen werden können.
  • Doch dann muss ein Empfänger z.B. zwischen vielen unterschiedlichen Amplituden unterscheiden können. Somit wird das Verfahren anfälliger für Störungen.
  • Trick: Anstelle der Änderung nur eines Parameters (z.B. der Amplitude) werden pro Symbol zwei Parameter verändert, nämlich die Amplitude und die Phase.
  • Ein Symbol entspricht dann einer Kombination einer bestimmten Amplitude mit einer bestimmten Phasenlage.
Abbildung 246: Signalverlauf eines 8QAM-Signals, je Symbol mit Amplitude (0,5 bzw. 1), Phasenlage und 3-stelliger Bitfolge
AE403: Wie werden Informationen bei der Quadraturamplitudenmodulation (QAM) mittels eines Trägers übertragen? Durch ...

Änderung der Amplitude und der Phase

separate Änderung des elektrischen und magnetischen Feldwellenanteils

richtungsabhängige Änderung der Frequenz

nichtlineare Änderung der Amplitude

Orthogonales Frequenzmultiplexverfahren (OFDM)

  • Es ist auch möglich, einen Datenstrom auf mehrere Träger zu verteilen, die auf unterschiedlichen, jedoch nahegelegenen Frequenzen liegen.
  • Bei der orthogonalen Frequenzmodulation (Orthogonal Frequency-Division Multiplexing, OFDM) werden die einzelnen Träger in einem Abstand platziert, wo ein gegenseitiges Stören untereinander (ein sogenanntes „Übersprechen“) vermieden wird.
Abbildung 247: Frequenzspektrum eines einfachen OFDM-Signals
  • Ein Vorteil dieses Vorgehens liegt darin, dass schmalbandige Störungen nur einen oder wenige Träger stören.
  • Im Zusammenspiel mit Fehlerkorrekturverfahren mit redundanter Datenübertragung, die wir später kennenlernen werden, ist es so möglich, trotz schmalbandiger Störungen eine fehlerfreie Übertragung zu erreichen.
AE421: Orthogonale Frequenzmultiplexverfahren (OFDM) mit redundanter Übertragung sind besonders unempfindlich gegen ...

schmalbandige Störungen, da es einen Träger mit hoher Bandbreite verwendet.

schmalbandige Störungen, da das Gesamtsignal aus mehreren Einzelträgern besteht.

breitbandige Störungen, da es einen Träger mit hoher Bandbreite verwendet.

breitbandige Störungen, da das Gesamtsignal aus mehreren Einzelträgern besteht.

  • Ein weiterer Vorteil ergibt sich aus der geringeren Symbolrate jedes einzelnen Trägers.
  • Durch die geringere Symbolrate ist die Dauer eines jeden Symbols länger.
  • Im Falle zeitlicher Verschiebungen aufgrund von Mehrwegeausbreitung ist der Anteil der Überlagerung zwischen den Signalen entsprechend geringer.
AE422: Bei welcher Art von Kanalstörung sind Orthogonale Frequenzmultiplexverfahren (OFDM) mit redundanter Übertragung besonders vorteilhaft?

Breitbandiges Rauschen

Überreichweiten anderer OFDM-Sender

Mehrwegeausbreitung

Impulse durch Gewitter

AFSK

  • Eine Sonderform der digitalen Modulation stellt das Audio Frequency Shift Keying (AFSK) dar.
  • Im Gegensatz zu ASK steht hier das „A“ nicht für Amplitude, sondern für Audio, also für hörbare Frequenzen (Niederfrequenz).
  • Es wird eine Frequenzumtastung (FSK) im Bereich deutlich unter 20 kHz durchgeführt. Oftmals wird der Bereich von ca. 300 Hz bis 2700 Hz genutzt.
  • Für eine Aussendung per Funk muss eine weitere Modulation stattfinden, beispielsweise per FM, AM oder SSB.
EE408: Was ist Audio Frequency Shift Keying (AFSK)?

Ein hochfrequentes PSK-Signal, das mittels automatischer Umtastung auf zwei NF-Träger übertragen wird, um Bandbreite zu sparen

Eine Kombination aus digitaler Amplituden- und Frequenzmodulation, um zwei Informationen gleichzeitig zu übertragen

Ein durch Frequenzumtastung erzeugtes NF-Signal, mit dem ein Hochfrequenzträger (z. B. mittels FM) moduliert werden kann

Ein unmodulierter Hochfrequenzträger, bei dem die Frequenzabweichung im hörbaren Bereich liegt

Datenübertragungsrate

  • Die Bandbreite ist der genutzte Frequenzbereich in Hz
  • Die Datenübertragungsrate ist die je Zeiteinheit übertragene Datenmenge in Bit/s
  • In der Praxis erreichbare Datenübertragungsraten unterscheiden sich je nach Übertragungsverfahren und Funkbedingungen deutlich.
  • WLAN und 5G unterstützen bei optimalen Bedingungen Datenübertragungsraten bis in den Bereich von Gigabit pro Sekunde.
  • FT8 hingegen kann selbst unter widrigen Bedingungen eingesetzt werden, überträgt aber nur wenige Bit pro Sekunde.
EA106: Welche Einheit wird üblicherweise für die Datenübertragungsrate verwendet?

Baud (Bd)

Bit pro Sekunde (Bit/s)

Hertz (Hz)

Dezibel (dB)

EE401: Welcher Unterschied besteht zwischen der Bandbreite und der Datenübertragungsrate?

Die Datenübertragungsrate (in Bit/s) entspricht der Symbolrate (in Baud). Die Bandbreite (in Hz) entspricht der maximal möglichen Datenübertragungsrate (in Bit/s).

Die Datenübertragungsrate (in Baud) entspricht der Symbolrate (in Bit/s). Die Bandbreite (in Hz) entspricht der minimal möglichen Datenübertragungsrate (in Baud).

Als Bandbreite wird die übertragene Datenmenge (in Hz) und als Datenübertragungsrate die je Zeiteinheit übertragenen Symbole (in Baud) bezeichnet.

Als Bandbreite wird der genutzte Frequenzbereich (in Hz) und als Datenübertragungsrate die je Zeiteinheit übertragene Datenmenge (in Bit/s) bezeichnet.

Shannon-Hartley-Gesetz

  • Welche Datenübertragungsrate erreichbar ist, hängt von der nutzbaren Bandbreite und dem Signal-Rauschverhältnis ab.
  • Aus diesen beiden Größen kann mit dem Shannon-Hartley-Gesetz die theoretisch maximal erreichbare Datenübertragungsrate für einen Übertragungskanal berechnet werden.
  • Ein leicht zu merkender Wert stellt sich bei einem Signal-Rausch-Verhältnis von 0 dB ein.
  • Hier entspricht die Bandbreite in Hertz genau der maximal erreichbaren Datenrate in Bit/s.
AE416: Welche Aussage trifft auf das Shannon-Hartley-Gesetz zu? Das Gesetz ...

besagt, dass unabhängig von der Art der vorherrschenden Störungen eines Übertragungskanals theoretisch eine unbegrenzte Datenübertragungsrate erzielt werden kann.

besagt, dass theoretisch eine unendliche Abtastrate erforderlich ist, um ein bandbegrenztes Signal fehlerfrei zu rekonstruieren.

bestimmt die maximale Bandbreite, die durch eine Übertragung mit einer bestimmten Datenübertragungsrate theoretisch belegt werden kann.

bestimmt für einen Übertragungskanal gegebener Bandbreite die höchste theoretisch erzielbare Datenübertragungsrate in Abhängigkeit vom Signal-Rausch-Verhältnis.

  • Schlechtere Signal-Rausch-Verhältnisse ermöglichen entsprechend weniger Datenrate, bessere Signal-Rausch-Verhältnisse größere Datenraten.
  • Da die Rechnungen dazu recht komplex sind, wurden die Prüfungsfragen so gestaltet, dass man das Ergebnis leicht abschätzen kann.
  • Im Folgenden gibt es Beispiele mit 0 db, -20 db und (+)30 db.

Beispiel 1:

  • Ein Übertragungskanal mit einer Bandbreite von 2,7 kHz wird durch additives weißes Gaußsches Rauschen (AWGN) gestört. * Das Signal-Rausch-Verhältnis (SNR) beträgt 0 dB.
  • Welche Bitrate kann nach dem Shannon-Hartley-Gesetz etwa maximal fehlerfrei übertragen werden?

Durch ein SNR von 0db entspricht die Bandbreite in Hertz genau der maximal erreichbaren Datenrate in Bit/s, also 2,7 kbit/s.

AE417: Ein Übertragungskanal mit einer Bandbreite von 2,7 kHz wird durch additives weißes Gaußsches Rauschen (AWGN) gestört. Das Signal-Rausch-Verhältnis (SNR) beträgt 0 dB. Welche Bitrate kann nach dem Shannon-Hartley-Gesetz etwa maximal fehlerfrei übertragen werden?

0 Bit/s (Übertragung nicht möglich)

ca. 2,7 Bit/s

ca. 2,7 kBit/s

ca. 39 Bit/s

AE418: Ein Übertragungskanal mit einer Bandbreite von 10 MHz wird durch additives weißes Gaußsches Rauschen (AWGN) gestört. Das Signal-Rausch-Verhältnis (SNR) beträgt 0 dB. Welche Bitrate kann nach dem Shannon-Hartley-Gesetz etwa maximal fehlerfrei übertragen werden?

ca. 100 MBit/s

ca. 10 MBit/s

ca. 7 MBit/s

ca. 8 MBit/s

Beispiel 2:

  • Ein Übertragungskanal mit einer Bandbreite von 2,7 kHz wird durch additives weißes Gaußsches Rauschen (AWGN) gestört. * Das Signal-Rausch-Verhältnis (SNR) beträgt -20 dB.
  • Welche Bitrate kann nach dem Shannon-Hartley-Gesetz etwa maximal fehlerfrei übertragen werden?

Durch ein SNR von -20db muss die maximal erreichbare Datenrate kleiner als 2,7 kbit/s sein. Es kann nur 39 Bit/s richtig sein.

AE420: Ein Übertragungskanal mit einer Bandbreite von 2,7 kHz wird durch additives weißes Gaußsches Rauschen (AWGN) gestört. Das Signal-Rausch-Verhältnis (SNR) beträgt -20 dB. Welche Bitrate kann nach dem Shannon-Hartley-Gesetz etwa maximal fehlerfrei übertragen werden?

ca. 5,4 kBit/s

0 Bit/s (Übertragung nicht möglich)

ca. 2,7 kBit/s

ca. 39 Bit/s

Beispiel 3:

  • Ein Übertragungskanal mit einer Bandbreite von 10 MHz wird durch additives weißes Gaußsches Rauschen (AWGN) gestört. * Das Signal-Rausch-Verhältnis (SNR) beträgt 30 dB.
  • Welche Bitrate kann nach dem Shannon-Hartley-Gesetz etwa maximal fehlerfrei übertragen werden?

Durch ein SNR von 30db muss die maximal erreichbare Datenrate größer 10 Mbit/s sein. Es kann nur 100 Mbit/s richtig sein.

AE419: Ein Übertragungskanal mit einer Bandbreite von 10 MHz wird durch additives weißes Gaußsches Rauschen (AWGN) gestört. Das Signal-Rausch-Verhältnis (SNR) beträgt 30 dB. Welche Bitrate kann nach dem Shannon-Hartley-Gesetz etwa maximal fehlerfrei übertragen werden?

ca. 10 MBit/s

ca. 7 MBit/s

ca. 8 MBit/s

ca. 100 MBit/s

Quellencodierung

  • Bei der digitalen Übertragung möchte man das Frequenzspektrum möglichst effizient nutzen.
  • Dies erreicht man durch die Kompression der Nutzdaten, die sogenannte Quellencodierung.
  • Dabei werden Redundanzen (z. B. Wiederholungen) oder Irrelevanzen (weniger wichtige Informationsteile) aus dem Datenstrom entfernt.
Abbildung 248: Quellencodierer
AE408: Wodurch kann die Datenmenge einer zu übertragenden Nachricht reduziert werden?

Quellencodierung

Kanalcodierung

Synchronisation

Mehrfachzugriff

Kanalcodierung

  • Die Abbildung zeigt einen Sender und einen Empfänger, welche über einen Kanal miteinander verbunden sind.
  • Durch atmosphärische Einflüsse oder Aussendungen anderer Stationen kann es zu Störungen auf dem Kanal kommen, welche zu Fehlern bei der Übertragung führen.
Abbildung 249: Kanal

Die Kanalcodierung fügt der zu übertragenden Information gezielt Redundanz hinzu, beispielsweise Wiederholungen oder Prüfsummen.

Wir unterscheiden zwei Arten der Kanalcodierung:

  • Fehlererkennung: Man kann erkennen, dass bei der Übertragung ein Fehler aufgetreten ist, und dann z. B. eine erneute Übertragung anfordern.
  • Vorwärtsfehlerkorrektur: Fehler, die bei der Übertragung entstehen, werden mit Hilfe der Redundanz beim Empfänger korrigiert.
Abbildung 250: Kanalcodierer
AE409: Was wird unter Kanalcodierung verstanden?

Verschlüsselung des Kanals zum Schutz gegen unbefugtes Abhören

Hinzufügen von Redundanz vor der Übertragung zum Schutz vor Übertragungsfehlern

Zuordnung von Frequenzen zu Sende- bzw. Empfangskanälen zur häufigen Verwendung

Kompression von Daten vor der Übertragung zur Reduktion der Datenmenge

Fehlererkennung

Fehlerkorrektur

Mapping

Sende- und Empfangsketten

Vielfachzugriff

TDMA

  • Time Division Multiple Access – Zeitmultiplexverfahren
  • Die digitalen Nutzdaten werden getrennt und nacheinander über die dieselbe Frequenz gesandt
  • Am Empfänger wird der Datenstrom wieder zusammengesetzt
EE409: Wie werden bei Zeitmultiplexverfahren (TDMA) mehrere Signale gleichzeitig übertragen?

Zeitgleich auf unterschiedlichen Wegen

Zeitgleich auf unterschiedlichen Frequenzen

Im schnellen zeitlichen Wechsel auf derselben Frequenz

Zeitgleich mit Spreizcodierung im selben Frequenzbereich

CDMA

  • Code Division Multiple Access – Codemultiplexverfahren
  • Die digitalen Nutzdaten werden mit einem digitalen Code codiert (gemischt)
  • Mehrere Signale können auf derselben Frequenz übertragen werden
  • Am Empfänger wird derselbe digitale Code zum decodieren verwendet
EE411: Wie werden bei Codemultiplexverfahren (CDMA) mehrere Signale gleichzeitig übertragen?

Im schnellen zeitlichen Wechsel auf derselben Frequenz

Zeitgleich auf unterschiedlichen Wegen

Zeitgleich auf unterschiedlichen Frequenzen

Zeitgleich mit Spreizcodierung im selben Frequenzbereich

FDMA

  • Frequency Division Multiple Access – Frequenzmultiplexverfahren
  • Das digitale Signal wird auf mehrere Frequenzen aufgeteilt
  • Dadurch kann mehr Bandbreite verwendet werden
EE410: Wie werden bei Frequenzmultiplexverfahren (FDMA) mehrere Signale gleichzeitig übertragen?

Zeitgleich auf unterschiedlichen Wegen

Zeitgleich auf unterschiedlichen Frequenzen

Im schnellen zeitlichen Wechsel auf derselben Frequenz

Zeitgleich mit Spreizcodierung im selben Frequenzbereich

Synchronization

Fragen?