Diese Navigationshilfe zeigt die ersten Schritte zur Verwendung der Präsention. Sie kann mit ⟶ (Pfeiltaste rechts) übersprungen werden.
Zwischen den Folien und Abschnitten kann man mittels der Pfeiltasten hin- und herspringen, dazu kann man auch die Pfeiltasten am Computer nutzen.
Mit ein paar Tastenkürzeln können weitere Funktionen aufgerufen werden. Die wichtigsten sind:
Die Präsentation ist zweidimensional aufgebaut. Dadurch sind in Spalten die einzelnen Abschnitte eines Kapitels und in den Reihen die Folien zu den Abschnitten.
Tippt man ein „o“ ein, bekommt man eine Übersicht über alle Folien des jeweiligen Kapitels. Das hilft sich zunächst einen Überblick zu verschaffen oder sich zu orientieren, wenn man das Gefühlt hat sich „verlaufen“ zu haben. Die Navigation erfolgt über die Pfeiltasten.
Durch Anklicken einer Folie wird diese präsentiert.
Tippt man ein „s“ ein, bekommt man ein neues Fenster, die Referentenansicht.
Indem man „Layout“ auswählt, kann man zwischen verschieden Anordnungen der Elemente auswählen.
Die Referentenansicht bietet folgende Elemente:
Tippt man ein „f“ ein, wird die aktuelle Folie im Vollbild angezeigt. Mit „Esc“ kann man diesen wieder verlassen.
Das ist insbesondere für den Bildschirm mit der Präsentation für das Publikum praktisch.
Tippt man ein „b“ ein, wird die Präsentation ausgeblendet.
Sie kann wie folgte wieder eingeblendet werden:
Bei gedrückter Alt-Taste und einem Mausklick in der Präsentation wird in diesen Teil hineingezoomt. Das ist praktisch, um Details von Schaltungen hervorzuheben. Durh einen nochmaligen Mausklick zusammen mit Alt wird wieder herausgezoomt.
Das Zoomen funktioniert nur im ausgewählten Fenster. Die Referentenansicht ist hier nicht mit dem Präsenationsansicht gesynct.
Bei der Informationsübertragung unterscheidet man grundsätzlich zwischen analogen und digitalen Verfahren.
Dezimalsystem
Binärsystem
A: Die binären Ziffern 0 und 1 können als zwei elektrische Zustände dargestellt und dadurch einfach mittels Schaltelementen (z. B. Transistoren) verarbeitet werden.
B: Die Genauigkeit des binären Systems (mit zwei Ziffern) ist um den Faktor 5 höher als die des Dezimalsystems (mit 10 Ziffern).
C: Je Ziffer kann mehr als ein Bit an Information übertragen werden (1 binäre Ziffer erlaubt die Übertragung von 8 Dezimalziffern).
D: Der Zwischenbereich zwischen 0 und 1 kann von analogen Verstärkerschaltungen mit hoher Genauigkeit abgebildet werden.
A: 6
B: 8
C: 4
D: 16
A: 4
B: 8
C: 16
D: 6
A: 32
B: 5
C: 128
D: 64
Binärzahlen in Dezimale Zahlen am Beispiel von 10001110
| 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 |
| 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
| 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
128 + 8 + 4 + 2 = 142
A: 156
B: 248
C: 78
D: 142
A: 156
B: 78
C: 142
D: 248
A: 142
B: 248
C: 78
D: 156
A: 248
B: 78
C: 142
D: 156
| A | ▄ ▄▄▄ | K | ▄▄▄ ▄ ▄▄▄ | U | ▄ ▄ ▄▄▄ |
| B | ▄▄▄ ▄ ▄ ▄ | L | ▄ ▄▄▄ ▄ ▄ | V | ▄ ▄ ▄ ▄▄▄ |
| C | ▄▄▄ ▄ ▄▄▄ ▄ | M | ▄▄▄ ▄▄▄ | W | ▄ ▄▄▄ ▄▄▄ |
| D | ▄▄▄ ▄ ▄ | N | ▄▄▄ ▄ | X | ▄▄▄ ▄ ▄ ▄▄▄ |
| E | ▄ | O | ▄▄▄ ▄▄▄ ▄▄▄ | Y | ▄▄▄ ▄ ▄▄▄ ▄▄▄ |
| F | ▄ ▄ ▄▄▄ ▄ | P | ▄ ▄▄▄ ▄▄▄ ▄ | Z | ▄▄▄ ▄▄▄ ▄ ▄ |
| G | ▄▄▄ ▄▄▄ ▄ | Q | ▄▄▄ ▄▄▄ ▄ ▄▄▄ | Ä | ▄ ▄▄▄ ▄ ▄▄▄ |
| H | ▄ ▄ ▄ ▄ | R | ▄ ▄▄▄ ▄ | Ö | ▄▄▄ ▄▄▄ ▄▄▄ ▄ |
| I | ▄ ▄ | S | ▄ ▄ ▄ | Ü | ▄ ▄ ▄▄▄ ▄▄▄ |
| J | ▄ ▄▄▄ ▄▄▄ ▄▄▄ | T | ▄▄▄ | ẞ | ▄ ▄ ▄ ▄▄▄ ▄▄▄ ▄ ▄ |
| 0 | ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ | 5 | ▄ ▄ ▄ ▄ ▄ | / | ▄▄▄ ▄ ▄ ▄▄▄ ▄ |
| 1 | ▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ | 6 | ▄▄▄ ▄ ▄ ▄ ▄ | . | ▄ ▄▄▄ ▄ ▄▄▄ ▄ ▄▄▄ |
| 2 | ▄ ▄ ▄▄▄ ▄▄▄ ▄▄▄ | 7 | ▄▄▄ ▄▄▄ ▄ ▄ ▄ | , | ▄▄▄ ▄▄▄ ▄ ▄ ▄▄▄ ▄▄▄ |
| 3 | ▄ ▄ ▄ ▄▄▄ ▄▄▄ | 8 | ▄▄▄ ▄▄▄ ▄▄▄ ▄ ▄ | ? | ▄ ▄ ▄▄▄ ▄▄▄ ▄ ▄ |
| 4 | ▄ ▄ ▄ ▄ ▄▄▄ | 9 | ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄ | = | ▄▄▄ ▄ ▄ ▄ ▄▄▄ |
| Unterbrechung (BK) | ▄▄▄ ▄ ▄▄▄ ▄▄▄ ▄ ▄▄▄ ▄ ▄ ▄ ▄▄▄ ▄ ▄▄▄ ▄▄▄ ▄ ▄▄▄ ▄▄▄ ▄ ▄▄▄ |
| Ende des Durchgangs (AR) | ▄▄▄ ▄ ▄▄▄ ▄▄▄ ▄ ▄ ▄▄▄ ▄ ▄▄▄ ▄ ▄▄▄ ▄ ▄▄▄ ▄▄▄ ▄ ▄▄▄ |
| Ende der Sendung (SK) | ▄▄▄ ▄ ▄▄▄ ▄▄▄ ▄ ▄ ▄ ▄ ▄▄▄ ▄ ▄▄▄ ▄▄▄ ▄ ▄▄▄ ▄▄▄ ▄ ▄▄▄ |
| Korrektur | ▄▄▄ ▄ ▄▄▄ ▄▄▄ ▄ ▄▄▄ ▄ ▄▄▄ ▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄ ▄▄▄ ▄ ▄ ▄▄▄ ▄ ▄ ▄▄▄ ▄ ▄▄▄ ▄ ▄▄▄ ▄ ▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄▄▄ ▄ ▄▄▄ ▄ ▄▄▄ ▄▄▄ ▄ ▄▄▄ |
A: In den Radio Regulations (RR) werden bezüglich der Morsequalifikation keine Regelungen getroffen.
B: Die nationale Verwaltung eines jeden Landes legt eigenständig fest, ob eine Morseprüfung erforderlich ist.
C: Bei einer Sendeleistung von mehr als 100 W benötigt der Funkamateur den Nachweis einer erfolgreich abgelegten Morseprüfung.
D: Wer Frequenzen unter 30 MHz nutzen will, muss eine Morseprüfung ablegen.
A: Eine Audioverbindung (NF-Signal oder digital z. B. per USB-Kabel) wird zwischen Computer und Funkgerät hergestellt oder es wird ein Hardware-Modem verwendet.
B: Der HF-Anschluss (z. B. Antennenausgang) des Funkgeräts wird mittels eines Y-Kabels mit einer geeigneten Datenschnittstelle des Computers verbunden.
C: Der ALC-Anschluss des Funkgeräts wird mittels eines Hardware-Modems mit Audio- oder Datenanschlüssen des Computers verbunden.
D: Es wird ein Software-Modem installiert und der ALC-Anschluss des Funkgeräts direkt mit dem Computer verbunden (ggf. auch mittels Adapter).
A: ohne weitere Beschaltung einen Drehwinkelgeber (Encoder) oder ein Potentiometer zur präzisen Frequenzeinstellung anzuschließen.
B: mittels eines seriellen Kommunikationsprotokolls den Transceiver z. B. mit einem Computer zu steuern oder Werte abzufragen, z. B. Frequenz, Sendeleistung oder PTT.
C: durch Umgehung von Verstärker- und Filterstufen ein NF-Signal (z. B. für DV oder POCSAG) möglichst verzerrungsfrei abzugreifen oder einzuspeisen.
D: das empfangene HF-Signal möglichst ungefiltert an einen Computer zur Weiterverarbeitung mittels digitaler Signalverarbeitung auszuleiten.
A: Das Funkgerät könnte unerwartet auf Sendung schalten und somit unerwünschte Aussendungen verursachen oder Menschen in Gefahr bringen.
B: Der Vorverstärker ist außer Funktion, wodurch Nachbarkanäle und Frequenzen in anderen Bändern gestört werden könnten.
C: Die automatische Pegelregelung (ALC) könnte ausgelöst werden und andere digitale Geräte stören.
D: Der Computer kann wie ein Elektrolytkondensator im Antennenkreis wirken und somit die Sendefrequenz verschieben.
A: ohne weitere Beschaltung einen Drehwinkelgeber (Encoder) oder ein Potentiometer zur präzisen Frequenzeinstellung anzuschließen.
B: mittels eines seriellen Kommunikationsprotokolls den Transceiver z. B. mit einem Computer zu steuern und Werte abzufragen, z. B. Frequenz, Sendeleistung oder PTT.
C: das empfangene HF-Signal möglichst ungefiltert an einen Computer auszuleiten und mittels digitaler Signalverarbeitung weiterzuverarbeiten.
D: durch Umgehung von Verstärker- und Filterstufen ein NF-Signal (z. B. für DV oder POCSAG) möglichst verzerrungsfrei abzugreifen oder einzuspeisen.
Die Abkürzung RTTY stammt von radio teletype
In einem Gespräch sieht dieses folgendermaßen aus:
| Abkz. | Bedeutung |
|---|---|
| BK | Unterbrechung der Sendung; Formlose Übergabe |
| CQ | Allgemeiner Anruf (vom Englischen „Seek You“) |
| DE | von |
| K | Aufforderung zum Senden |
| PSE | Bitte (vom Englischen „Please“) |
| QSL | Ich bestätige den Empfang |
| R | Received (Empfangsbestätigung) |
| RPRT | Rapport (vom Englischen „Report“) |
| Abkz. | Bedeutung |
|---|---|
| RST | RST-Rapport |
| SK | Ende der Verbindung (vom Englischen „Silent Key“) |
| TNX | Danke (vom Englischen „Thanks“) |
| UR | du bist (im Sinne von „dein Signal ist“, vom Englischen „you are“) |
| VY | sehr (vom Englischen „very“) |
| 73 | viele Grüße |
| = | Trennzeichen |
Teil 1 unseres Beispiel-Gesprächs:
Allgemeiner Anruf von DL2AB – Bitte Kommen!
DL2AB von DL1PZ – Kommen!
Teil 2 unseres Beispiel-Gesprächs:
DL1PZ von DL2AB. Dein Signal ist mit dem RST-Wert 599, ich wiederhole, 599. DL1PZ von DL2AB – Kommen!
DL2AB von DL1PZ. Danke für den RST-Rapport, dein Signal ist 479, ich wiederhole, 479. Zurück zu dir!
Teil 3 unseres Beispiel-Gesprächs:
Hier bin ich wieder. Ich bestätige den Empfang. Sehr viele Grüße von DL2AB. Ende der Verbindung.
Verstanden. Viele Grüße von DL1PZ. Ende der Verbindung.
A: Sende- und Empfangsstation müssen das gleiche Übertragungsverfahren (z. B. JS8, PSK, RTTY) und ggf. die gleichen Verfahrensparameter verwenden.
B: Die Übertragung sollte bevorzugt mit einem schnellen Verfahren stattfinden, damit die Amateurfunkbänder nicht unnötig belastet werden.
C: Sende- und Empfangsstation müssen die gleiche Zeitzoneneinstellung (z. B. Sommerzeit) aufweisen, damit die Übertragung erfolgreich sein kann.
D: Die Übertragung sollte bevorzugt während der Abend- und Nachtstunden stattfinden, da die Frequenzen tagsüber für Sprechverbindungen freigehalten werden.
A: Sie werden als Kennung beim Amateurfunkpeilen genutzt, um die Sender zu kennzeichnen.
B: Sie werden bei Verbindungen über Amateurfunksatelliten benutzt, um den Dopplereffekt durch kürzere Durchgänge zu vermeiden.
C: Der Informationsgehalt einer Aussendung wird verschleiert und ist damit für Unbeteiligte nicht verständlich.
D: Der Betriebsablauf wird vereinfacht und der zu übertragende Informationsgehalt pro Zeiteinheit optimiert.
A: Repeat (wiederhole)
B: Received (empfangen)
C: Readability (Lesbarkeit)
D: Rapport (Bericht)
A: Aufforderung zum Senden
B: Unterbrechung der Sendung
C: Beendigung des Funkverkehrs
D: Bitte warten
A: Beendigung des Funkverkehrs; wird auch zur formlosen Begrüßung genutzt
B: Alles richtig verstanden; wird auch zur schnellen Beendigung eines Funkkontakts genutzt
C: Bitte warten; wird auch zur schnellen Anforderung eines Rapports genutzt
D: Signal zur Unterbrechung einer laufenden Sendung; wird auch zur formlosen Übergabe genutzt
A: CQ CQ CQ FRM DL2AB DL2AB DL2AB pse k
B: CQ CQ CQ DE DL2AB DL2AB DL2AB pse k
C: QRZ QRZ QRZ DE DL2AB DL2AB DL2AB pse k
D: CQ QRZ CQ QRZ CQ QRZ DE DL2AB DL2AB DL2AB pse k
A: genauso schnell oder langsamer als der Anruf.
B: mit meiner gewohnten Geschwindigkeit.
C: mit dem höchsten Tempo, das ich fehlerfrei geben kann.
D: mit einem Gebetempo von maximal 60 CPM.
A: im international festgelegten Einheitstempo von 12 WPM, um eine automatische Dekodierung zu ermöglichen.
B: in dem Tempo, das mir am besten liegt. Andere müssen sich an mich anpassen.
C: so schnell ich kann, damit es nicht zu unnötigen Verzögerungen im Betriebsablauf kommt.
D: nicht schneller, als ich auch aufnehmen kann, und passe mich an langsamere Stationen an.
A: 25 Hz
B: 50 Hz
C: $\sqrt{2} \cdot$ 50 Hz
D: 100 Hz
A: Einseitenbandmodulation (SSB)
B: Frequenzmodulation (FM)
C: Phasenmodulation (PM)
D: Amplitudenmodulation (AM)
A: Es können je nach Art der Signale ein oder mehrere Signale empfangen werden.
B: Es kann maximal ein Signal empfangen werden, da ein Seitenband genutzt wird.
C: Es kann maximal ein Signal empfangen werden, außer das Funkgerät verfügt über doppelte Kanalbandbreite.
D: Es können maximal zwei Signale empfangen werden (eines pro Seitenband).
A: SSTV belegt eine größere Bandbreite als ATV.
B: SSTV wird nur auf Kurzwelle, ATV auf UKW verwendet.
C: SSTV überträgt Standbilder, ATV bewegte Bilder.
D: SSTV ist schwarzweiß, ATV in Farbe.
A: Punkt 2
B: Punkt 3
C: Punkt 4
D: Punkt 1
A: Punkt 2
B: Punkt 4
C: Punkt 3
D: Punkt 1
A: Alle Bedienelemente sind auf das Maximum einzustellen.
B: Die NF-Lautstärke muss $-\infty$ dB (also Null) betragen.
C: 18 dB höher als die Lautstärke, bei der die automatische Pegelregelung (ALC) eingreift.
D: So niedrig, dass die automatische Pegelregelung (ALC) nicht eingreift.
A: Störungen von Übertragungen auf Nachbarfrequenzen
B: Störungen von Computern oder anderen digitalen Geräten
C: Störungen von nachfolgenden Sendungen auf derselben Frequenz
D: Störungen von Stationen auf anderen Frequenzbändern
A: Die Sendeleistung sollte erhöht werden.
B: Es sollte mit der RIT gegengesteuert werden.
C: Der NF-Pegel am Eingang des Funkgerätes sollte reduziert werden.
D: Das Oberwellenfilter sollte abgeschaltet werden.
A: Durch Aussendung einer Nachricht mittels geeignetem digitalen Verfahren (z. B. CW oder WSPR) unter Angabe Ihrer E-Mail-Adresse und der Anzahl der maximal gewünschten Empfangsberichte
B: Durch Aussendung Ihres Rufzeichens mittels Telegrafie (12 WPM) mit dem Zusatz "R" (für Report) und Abhören der 10 kHz tiefer gelegenen Frequenz
C: Durch Aussendung einer Nachricht mittels geeignetem digitalen Verfahren (z. B. CW oder WSPR) und Suche nach Ihrem Rufzeichen auf passenden Internetplattformen
D: Durch Aussendung Ihres Rufzeichens mittels Telegrafie (5 WPM) mit dem Zusatz "AUTO RSVP" (vom französischen "répondez s'il vous pla\^it") und Abhören der 10 kHz höher gelegenen Frequenz
BPSK (Binary Phase Shift Keying)
Höhere Varianten:
A: sinkt.
B: steigt im oberen und sinkt im unteren Seitenband.
C: bleibt gleich.
D: steigt.
A: die ausgesendeten Signale schwierig zu lesen sind.
B: während der Aussetzer Probleme im Leistungsverstärker entstehen könnten.
C: wahrscheinlich Tastklicks erzeugt werden.
D: die Stromversorgung überlastet wird.
A: Mit BPSK wird ein Bit pro Symbol übertragen, mit QPSK zwei Bit pro Symbol.
B: Bei BPSK werden der I- und der Q-Anteil eines I/Q-Signals vertauscht, bei QPSK nicht.
C: Bei QPSK werden der I- und der Q-Anteil eines I/Q-Signals vertauscht, bei BPSK nicht.
D: Mit QPSK wird ein Bit pro Symbol übertragen, mit BPSK zwei Bit pro Symbol.
A: Baud (Bd)
B: Bit pro Sekunde (Bit/s)
C: Dezibel (dB)
D: Hertz (Hz)
Beispiele:
RTTY: Umschaltung zwischen zwei Symbolfrequenzen, sodass pro Symbol ein Bit (0 oder 1) übertragen werden kann. → Datenrate = Symbolrate
FT4: Umschaltung zwischen vier Symbolfrequenzen, so dass pro Symbol zwei Bit (00, 01, 10 oder 11) übertragen werden können. → Datenrate = 2 $\cdot$ Symbolrate
A: 22,725 Bit/s
B: 45,45 Bit/s
C: 181,8 Bit/s
D: 90,9 Bit/s
A: 46,8 Bit/s
B: 93,6 Bit/s
C: 23,4 Bit/s
D: 11,7 Bit/s
A: nichtlineare Änderung der Amplitude
B: richtungsabhängige Änderung der Frequenz
C: separate Änderung des elektrischen und magnetischen Feldwellenanteils
D: Änderung der Amplitude und der Phase
A: schmalbandige Störungen, da das Gesamtsignal aus mehreren Einzelträgern besteht.
B: breitbandige Störungen, da das Gesamtsignal aus mehreren Einzelträgern besteht.
C: schmalbandige Störungen, da es einen Träger mit hoher Bandbreite verwendet.
D: breitbandige Störungen, da es einen Träger mit hoher Bandbreite verwendet.
A: Überreichweiten anderer OFDM-Sender
B: Breitbandiges Rauschen
C: Impulse durch Gewitter
D: Mehrwegeausbreitung
A: Ein durch Frequenzumtastung erzeugtes NF-Signal, mit dem ein Hochfrequenzträger (z. B. mittels FM) moduliert werden kann
B: Ein unmodulierter Hochfrequenzträger, bei dem die Frequenzabweichung im hörbaren Bereich liegt
C: Eine Kombination aus digitaler Amplituden- und Frequenzmodulation, um zwei Informationen gleichzeitig zu übertragen
D: Ein hochfrequentes PSK-Signal, das mittels automatischer Umtastung auf zwei NF-Träger übertragen wird, um Bandbreite zu sparen
A: Baud (Bd)
B: Hertz (Hz)
C: Dezibel (dB)
D: Bit pro Sekunde (Bit/s)
A: Als Bandbreite wird der genutzte Frequenzbereich (in Hz) und als Datenübertragungsrate die je Zeiteinheit übertragene Datenmenge (in Bit/s) bezeichnet.
B: Die Datenübertragungsrate (in Bit/s) entspricht der Symbolrate (in Baud). Die Bandbreite (in Hz) entspricht der maximal möglichen Datenübertragungsrate (in Bit/s).
C: Als Bandbreite wird die übertragene Datenmenge (in Hz) und als Datenübertragungsrate die je Zeiteinheit übertragenen Symbole (in Baud) bezeichnet.
D: Die Datenübertragungsrate (in Baud) entspricht der Symbolrate (in Bit/s). Die Bandbreite (in Hz) entspricht der minimal möglichen Datenübertragungsrate (in Baud).
A: bestimmt die maximale Bandbreite, die durch eine Übertragung mit einer bestimmten Datenübertragungsrate theoretisch belegt werden kann.
B: besagt, dass unabhängig von der Art der vorherrschenden Störungen eines Übertragungskanals theoretisch eine unbegrenzte Datenübertragungsrate erzielt werden kann.
C: besagt, dass theoretisch eine unendliche Abtastrate erforderlich ist, um ein bandbegrenztes Signal fehlerfrei zu rekonstruieren.
D: bestimmt für einen Übertragungskanal gegebener Bandbreite die höchste theoretisch erzielbare Datenübertragungsrate in Abhängigkeit vom Signal-Rausch-Verhältnis.
A: ca. 2,7 kBit/s
B: ca. 2,7 Bit/s
C: ca. 39 Bit/s
D: 0 Bit/s (Übertragung nicht möglich)
Durch ein SNR von 0 dB entspricht die Bandbreite in Hertz genau der maximal erreichbaren Datenrate in Bit/s, also 2,7 kBit/s.
A: ca. 7 MBit/s
B: ca. 10 MBit/s
C: ca. 8 MBit/s
D: ca. 100 MBit/s
Durch ein SNR von 0 dB entspricht die Bandbreite in Hertz genau der maximal erreichbaren Datenrate in Bit/s, also 10 MBit/s.
A: 0 Bit/s (Übertragung nicht möglich)
B: ca. 39 Bit/s
C: ca. 2,7 kBit/s
D: ca. 5,4 kBit/s
Durch ein SNR von -20 dB muss die maximal erreichbare Datenrate kleiner als 2,7 kbit/s sein. Es kann nur 39 Bit/s richtig sein.
A: ca. 8 MBit/s
B: ca. 100 MBit/s
C: ca. 10 MBit/s
D: ca. 7 MBit/s
Durch ein SNR von 30 dB muss die maximal erreichbare Datenrate größer 10 Mbit/s sein. Es kann nur 100 MBit/s richtig sein.
A: Mehrfachzugriff
B: Quellencodierung
C: Kanalcodierung
D: Synchronisation
Die Kanalcodierung fügt der zu übertragenden Information gezielt Redundanz hinzu, beispielsweise Wiederholungen oder Prüfsummen.
A: Hinzufügen von Redundanz vor der Übertragung zum Schutz vor Übertragungsfehlern
B: Zuordnung von Frequenzen zu Sende- bzw. Empfangskanälen zur häufigen Verwendung
C: Verschlüsselung des Kanals zum Schutz gegen unbefugtes Abhören
D: Kompression von Daten vor der Übertragung zur Reduktion der Datenmenge
Wir unterscheiden zwei Arten der Kanalcodierung:
A: Maximal zwei Bits
B: Eine ungerade Anzahl Bits
C: Eine gerade Anzahl Bits
D: Mindestens zwei Bits
A: Die Übertragung war fehlerfrei oder es ist eine gerade Anzahl an Bitfehlern aufgetreten.
B: Die Übertragung war fehlerfrei.
C: Die Übertragung war fehlerfrei oder es ist eine ungerade Anzahl an Bitfehlern aufgetreten.
D: Die Nutzdaten wurden fehlerfrei, das Prüfbit jedoch fehlerhaft übertragen.
A: Die fortlaufende Prüfung eines zu übertragenden Datenstroms auf Redundanz.
B: Umlaufende (zyklische) Überwachung einer Frequenz durch mehrere Stationen.
C: Wiederholte (zyklisch redundante) Prüfung der Amateurfunkanlage auf Fehler.
D: Ein Prüfsummenverfahren zur Fehlererkennung in Datenblöcken variabler Länge.
A: Erneute Übertragung
B: I/Q-Verfahren
C: Wiederholte Prüfung
D: Duplizieren der Prüfsumme
A: Automatische Anpassung der Sendeleistung
B: Übertragung redundanter Informationen
C: Kompression vor der Übertragung
D: Erneute Übertragung fehlerhafter Daten
00 bei 0°: Punkt auf der positiven X-Achse
01 bei 90°: Punkt auf der positiven Y-Achse
10 bei 180°: Punkt auf der negativen X-Achse
11 bei 270°: Punkt auf der negativen Y-Achse
Die klare Trennung der Phasen erleichtert das Auseinanderhalten der Symbole – auch bei Rauschen
A: Zeitgleich auf unterschiedlichen Frequenzen
B: Im schnellen zeitlichen Wechsel auf derselben Frequenz
C: Zeitgleich mit Spreizcodierung im selben Frequenzbereich
D: Zeitgleich auf unterschiedlichen Wegen
A: Zeitgleich mit Spreizcodierung im selben Frequenzbereich
B: Zeitgleich auf unterschiedlichen Frequenzen
C: Im schnellen zeitlichen Wechsel auf derselben Frequenz
D: Zeitgleich auf unterschiedlichen Wegen
A: Zeitgleich auf unterschiedlichen Wegen
B: Zeitgleich auf unterschiedlichen Frequenzen
C: Zeitgleich mit Spreizcodierung im selben Frequenzbereich
D: Im schnellen zeitlichen Wechsel auf derselben Frequenz
A: Herstellung der zeitlichen Übereinstimmung zwischen Sender und Empfänger.
B: Asynchrone Frequenzwechsel, bei denen der Empfänger den Sender sucht.
C: Automatischer Abgleich von Datenbeständen von zwei oder mehr Stationen.
D: Anpassung der Sendeleistung synchron zu den Ausbreitungsbedingungen.