Diese Navigationshilfe zeigt die ersten Schritte zur Verwendung der Präsentation. Sie kann mit ⟶ (Pfeiltaste rechts) übersprungen werden.
Zwischen den Folien und Abschnitten kann man mittels der Pfeiltasten hin- und herspringen, dazu kann man auch die Pfeiltasten am Computer nutzen.
Mit ein paar Tastenkürzeln können weitere Funktionen aufgerufen werden. Die wichtigsten sind:
Die Präsentation ist zweidimensional aufgebaut. Dadurch sind in Spalten die einzelnen Abschnitte eines Kapitels und in den Reihen die Folien zu den Abschnitten.
Tippt man ein „o“ ein, bekommt man eine Übersicht über alle Folien des jeweiligen Kapitels. Das hilft sich zunächst einen Überblick zu verschaffen oder sich zu orientieren, wenn man das Gefühlt hat sich „verlaufen“ zu haben. Die Navigation erfolgt über die Pfeiltasten.
Durch Anklicken einer Folie wird diese präsentiert.
Tippt man ein „s“ ein, bekommt man ein neues Fenster, die Referentenansicht.
Indem man „Layout“ auswählt, kann man zwischen verschieden Anordnungen der Elemente auswählen.
Die Referentenansicht bietet folgende Elemente:
Tippt man ein „f“ ein, wird die aktuelle Folie im Vollbild angezeigt. Mit „Esc“ kann man diesen wieder verlassen.
Das ist insbesondere für den Bildschirm mit der Präsentation für das Publikum praktisch.
Tippt man ein „b“ ein, wird die Präsentation ausgeblendet.
Sie kann wie folgt wieder eingeblendet werden:
Bei gedrückter Alt-Taste und einem Mausklick in der Präsentation wird in diesen Teil hineingezoomt. Das ist praktisch, um Details von Schaltungen hervorzuheben. Durch einen nochmaligen Mausklick zusammen mit Alt wird wieder herausgezoomt.
Das Zoomen funktioniert nur im ausgewählten Fenster. Die Referentenansicht ist hier nicht mit dem Präsenationsansicht gesynct.
Dezimalsystem
Binärsystem
A: Der Zwischenbereich zwischen 0 und 1 kann von analogen Verstärkerschaltungen mit hoher Genauigkeit abgebildet werden.
B: Je Ziffer kann mehr als ein Bit an Information übertragen werden (1 binäre Ziffer erlaubt die Übertragung von 8 Dezimalziffern).
C: Die Genauigkeit des binären Systems (mit zwei Ziffern) ist um den Faktor 5 höher als die des Dezimalsystems (mit 10 Ziffern).
D: Die binären Ziffern 0 und 1 können als zwei elektrische Zustände dargestellt und dadurch einfach mittels Schaltelementen (z. B. Transistoren) verarbeitet werden.
A: 8
B: 6
C: 4
D: 16
A: 16
B: 8
C: 4
D: 6
A: 32
B: 5
C: 128
D: 64
Binärzahlen in Dezimale Zahlen am Beispiel von 10001110
27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 |
128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
128 + 8 + 4 + 2 = 142
A: 248
B: 78
C: 142
D: 156
A: 156
B: 78
C: 142
D: 248
A: 78
B: 156
C: 142
D: 248
A: 142
B: 248
C: 78
D: 156
A:
B:
C: $\sqrt{2} \cdot$
D:
A: Frequenzmodulation (FM)
B: Amplitudenmodulation (AM)
C: Einseitenbandmodulation (SSB)
D: Phasenmodulation (PM)
A: Es können maximal zwei Signale empfangen werden (eines pro Seitenband).
B: Es kann maximal ein Signal empfangen werden, da ein Seitenband genutzt wird.
C: Es kann maximal ein Signal empfangen werden, außer das Funkgerät verfügt über doppelte Kanalbandbreite.
D: Es können je nach Art der Signale ein oder mehrere Signale empfangen werden.
A: SSTV wird nur auf Kurzwelle, ATV auf UKW verwendet.
B: SSTV belegt eine größere Bandbreite als ATV.
C: SSTV ist schwarzweiß, ATV in Farbe.
D: SSTV überträgt Standbilder, ATV bewegte Bilder.
A: Punkt 3
B: Punkt 2
C: Punkt 4
D: Punkt 1
A: Punkt 3
B: Punkt 1
C: Punkt 2
D: Punkt 4
A: Die NF-Lautstärke muss $-\infty$ dB (also Null) betragen.
B:
C: Alle Bedienelemente sind auf das Maximum einzustellen.
D: So niedrig, dass die automatische Pegelregelung (ALC) nicht eingreift.
A: Störungen von Übertragungen auf Nachbarfrequenzen
B: Störungen von Computern oder anderen digitalen Geräten
C: Störungen von Stationen auf anderen Frequenzbändern
D: Störungen von nachfolgenden Sendungen auf derselben Frequenz
A: Der NF-Pegel am Eingang des Funkgerätes sollte reduziert werden.
B: Es sollte mit der RIT gegengesteuert werden.
C: Die Sendeleistung sollte erhöht werden.
D: Das Oberwellenfilter sollte abgeschaltet werden.
A: Durch Aussendung einer Nachricht mittels geeignetem digitalen Verfahren (z. B. CW oder WSPR) unter Angabe Ihrer E-Mail-Adresse und der Anzahl der maximal gewünschten Empfangsberichte
B: Durch Aussendung Ihres Rufzeichens mittels Telegrafie (12 WPM) mit dem Zusatz „R“ (für Report) und Abhören der
C: Durch Aussendung einer Nachricht mittels geeignetem digitalen Verfahren (z. B. CW oder WSPR) und Suche nach Ihrem Rufzeichen auf passenden Internetplattformen
D: Durch Aussendung Ihres Rufzeichens mittels Telegrafie (5 WPM) mit dem Zusatz „AUTO RSVP“ (vom französischen „répondez s'il vous plaît“) und Abhören der
Beispiele:
10.100.234.22 (kleiner Netzanteil, großer Hostanteil)
192.168.1.252 (großer Netzanteil, kleiner Hostanteil)
Dieses Prinzip kennt man vom Telefonnetz. Die großen Städte haben kürzere Vorwahlen als kleine Städte.
A: Durch wiederholte Aussendung (Paketwiederholung)
B: Durch Weiterleitung über Zwischenstationen (Paketweiterleitung)
C: Durch Entpacken vor der Sendung (Paketdekompression)
D: Durch Zusammenfassung von Übertragungen (Paketdefragmentierung)
A: Ja, die Kodierung des Amateurfunkrufzeichens erfolgt in der Subnetzmaske.
B: Nein, die benötigte Bandbreite steht im Amateurfunk nicht zur Verfügung.
C: Ja, es ist nicht auf das Internet beschränkt.
D: Nein, Internetnutzern würde so Zugang zum Amateurfunkband ermöglicht.
A: Die Gegenstelle und die durch das Teilnetz verwendete Bandbreite
B: Das Standardgateway und die maximale Anzahl der Zwischenstationen (Hops)
C: Die Protokoll- und Portnummer des über die Schnittstelle verwendeten Protokolls
D: Der direkt (d. h. ohne Router) über die Schnittstelle erreichbare Adressbereich
BPSK (Binary Phase Shift Keying)
Höhere Varianten:
A: sinkt.
B: bleibt gleich.
C: steigt.
D: steigt im oberen und sinkt im unteren Seitenband.
A: wahrscheinlich Tastklicks erzeugt werden.
B: die Stromversorgung überlastet wird.
C: die ausgesendeten Signale schwierig zu lesen sind.
D: während der Aussetzer Probleme im Leistungsverstärker entstehen könnten.
A: Mit QPSK wird ein Bit pro Symbol übertragen, mit BPSK zwei Bit pro Symbol.
B: Mit BPSK wird ein Bit pro Symbol übertragen, mit QPSK zwei Bit pro Symbol.
C: Bei QPSK werden der I- und der Q-Anteil eines I/Q-Signals vertauscht, bei BPSK nicht.
D: Bei BPSK werden der I- und der Q-Anteil eines I/Q-Signals vertauscht, bei QPSK nicht.
C → Datenübertragungsrate in Bit/s
$R_{ s }$ → Symbolrate in Baud
n → Symbolgröße in Bit/Symbol
A: Bit pro Sekunde (Bit/s)
B: Hertz (Hz)
C: Baud (Bd)
D: Dezibel (dB)
Beispiele:
RTTY: Umschaltung zwischen zwei Symbolfrequenzen, sodass pro Symbol ein Bit (0 oder 1) übertragen werden kann.
→ Datenrate = Symbolrate
FT4: Umschaltung zwischen vier Symbolfrequenzen, so dass pro Symbol zwei Bit (00, 01, 10 oder 11) übertragen werden können.
→ Datenrate = 2 $\cdot$ Symbolrate
A:
B:
C:
D:
$C = R_S \cdot n = 45,45Bd \cdot 1 = 45,45\frac{Bit}{s}$
A:
B:
C:
D:
$C = R_S \cdot n = 23,4Bd \cdot 2 = 46,8\frac{Bit}{s}$
A: separate Änderung des elektrischen und magnetischen Feldwellenanteils
B: Änderung der Amplitude und der Phase
C: nichtlineare Änderung der Amplitude
D: richtungsabhängige Änderung der Frequenz
A: schmalbandige Störungen, da es einen Träger mit hoher Bandbreite verwendet.
B: schmalbandige Störungen, da das Gesamtsignal aus mehreren Einzelträgern besteht.
C: breitbandige Störungen, da es einen Träger mit hoher Bandbreite verwendet.
D: breitbandige Störungen, da das Gesamtsignal aus mehreren Einzelträgern besteht.
A: Mehrwegeausbreitung
B: Impulse durch Gewitter
C: Überreichweiten anderer OFDM-Sender
D: Breitbandiges Rauschen
A: Ein hochfrequentes PSK-Signal, das mittels automatischer Umtastung auf zwei NF-Träger übertragen wird, um Bandbreite zu sparen
B: Eine Kombination aus digitaler Amplituden- und Frequenzmodulation, um zwei Informationen gleichzeitig zu übertragen
C: Ein durch Frequenzumtastung erzeugtes NF-Signal, mit dem ein Hochfrequenzträger (z. B. mittels FM) moduliert werden kann
D: Ein unmodulierter Hochfrequenzträger, bei dem die Frequenzabweichung im hörbaren Bereich liegt
A: Hertz (Hz)
B: Baud (Bd)
C: Bit pro Sekunde (Bit/s)
D: Dezibel (dB)
A: Als Bandbreite wird die übertragene Datenmenge (in Hz) und als Datenübertragungsrate die je Zeiteinheit übertragenen Symbole (in Baud) bezeichnet.
B: Als Bandbreite wird der genutzte Frequenzbereich (in Hz) und als Datenübertragungsrate die je Zeiteinheit übertragene Datenmenge (in Bit/s) bezeichnet.
C: Die Datenübertragungsrate (in Baud) entspricht der Symbolrate (in Bit/s). Die Bandbreite (in Hz) entspricht der minimal möglichen Datenübertragungsrate (in Baud).
D: Die Datenübertragungsrate (in Bit/s) entspricht der Symbolrate (in Baud). Die Bandbreite (in Hz) entspricht der maximal möglichen Datenübertragungsrate (in Bit/s).
A: bestimmt für einen Übertragungskanal gegebener Bandbreite die höchste theoretisch erzielbare Datenübertragungsrate in Abhängigkeit vom Signal-Rausch-Verhältnis.
B: besagt, dass theoretisch eine unendliche Abtastrate erforderlich ist, um ein bandbegrenztes Signal fehlerfrei zu rekonstruieren.
C: bestimmt die maximale Bandbreite, die durch eine Übertragung mit einer bestimmten Datenübertragungsrate theoretisch belegt werden kann.
D: besagt, dass unabhängig von der Art der vorherrschenden Störungen eines Übertragungskanals theoretisch eine unbegrenzte Datenübertragungsrate erzielt werden kann.
A:
B: ca.
C: ca.
D: ca.
Durch ein SNR von
A: ca.
B: ca.
C: ca.
D: ca.
Durch ein SNR von
A: ca.
B:
C: ca.
D: ca.
Durch ein SNR von -
A: ca.
B: ca.
C: ca.
D: ca.
Durch ein SNR von
A: Mehrfachzugriff
B: Quellencodierung
C: Kanalcodierung
D: Synchronisation
Die Kanalcodierung fügt der zu übertragenden Information gezielt Redundanz hinzu, beispielsweise Wiederholungen oder Prüfsummen.
A: Verschlüsselung des Kanals zum Schutz gegen unbefugtes Abhören
B: Kompression von Daten vor der Übertragung zur Reduktion der Datenmenge
C: Zuordnung von Frequenzen zu Sende- bzw. Empfangskanälen zur häufigen Verwendung
D: Hinzufügen von Redundanz vor der Übertragung zum Schutz vor Übertragungsfehlern
Wir unterscheiden zwei Arten der Kanalcodierung:
A: Maximal zwei Bits
B: Eine gerade Anzahl Bits
C: Mindestens zwei Bits
D: Eine ungerade Anzahl Bits
A: Die Nutzdaten wurden fehlerfrei, das Prüfbit jedoch fehlerhaft übertragen.
B: Die Übertragung war fehlerfrei.
C: Die Übertragung war fehlerfrei oder es ist eine gerade Anzahl an Bitfehlern aufgetreten.
D: Die Übertragung war fehlerfrei oder es ist eine ungerade Anzahl an Bitfehlern aufgetreten.
A: Wiederholte (zyklisch redundante) Prüfung der Amateurfunkanlage auf Fehler.
B: Ein Prüfsummenverfahren zur Fehlererkennung in Datenblöcken variabler Länge.
C: Die fortlaufende Prüfung eines zu übertragenden Datenstroms auf Redundanz.
D: Umlaufende (zyklische) Überwachung einer Frequenz durch mehrere Stationen.
A: Wiederholte Prüfung
B: Duplizieren der Prüfsumme
C: Erneute Übertragung
D: I/Q-Verfahren
A: Automatische Anpassung der Sendeleistung
B: Erneute Übertragung fehlerhafter Daten
C: Übertragung redundanter Informationen
D: Kompression vor der Übertragung
Die Darstellung ist für ein 8QAM-Mapping. QPSK im Beispiel entspricht dem äußeren Kreis.
A: Im schnellen zeitlichen Wechsel auf derselben Frequenz
B: Zeitgleich auf unterschiedlichen Frequenzen
C: Zeitgleich auf unterschiedlichen Wegen
D: Zeitgleich mit Spreizcodierung im selben Frequenzbereich
A: Im schnellen zeitlichen Wechsel auf derselben Frequenz
B: Zeitgleich auf unterschiedlichen Frequenzen
C: Zeitgleich auf unterschiedlichen Wegen
D: Zeitgleich mit Spreizcodierung im selben Frequenzbereich
A: Im schnellen zeitlichen Wechsel auf derselben Frequenz
B: Zeitgleich mit Spreizcodierung im selben Frequenzbereich
C: Zeitgleich auf unterschiedlichen Frequenzen
D: Zeitgleich auf unterschiedlichen Wegen
A: Herstellung der zeitlichen Übereinstimmung zwischen Sender und Empfänger.
B: Automatischer Abgleich von Datenbeständen von zwei oder mehr Stationen.
C: Asynchrone Frequenzwechsel, bei denen der Empfänger den Sender sucht.
D: Anpassung der Sendeleistung synchron zu den Ausbreitungsbedingungen.